PatentDe  


Dokumentenidentifikation EP1513249 21.12.2006
EP-Veröffentlichungsnummer 0001513249
Titel Verfahren zur Symmetrierung eines Gleichspannungskreises einer Umrichterschaltung zur Schaltung von drei Spannungsniveaus
Anmelder ABB Research Ltd., Zürich, CH
Erfinder Gerhard, Bilal, 5443 Niederrohrdorf, CH;
Herold, Simon, 8902 Urdorf, CH;
Beiser, Dirk, 5417 Untersiggenthal, CH;
Sario, Petteri, 5408 Ennetbaden, CH
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 50305641
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, SI, SK, TR
Sprache des Dokument DE
EP-Anmeldetag 08.09.2003
EP-Aktenzeichen 034056531
EP-Offenlegungsdatum 09.03.2005
EP date of grant 08.11.2006
Veröffentlichungstag im Patentblatt 21.12.2006
IPC-Hauptklasse H02M 7/48(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[de]
Technisches Gebiet

Die Erfindung bezieht sich auf das Gebiet der Leistungselektronik. Sie geht aus von einem Verfahren zur Symmetrierung eines Gleichspannungskreises einer Umrichterschaltung zur Schaltung von drei Spannungsniveaus gemäss dem Oberbegriff des unabhängigen Anspruchs.

Stand der Technik

Heute werden in vielen Anwendungen Hochleistungsspannungsumrichter eingesetzt. Ein solcher Umrichter schaltet gängigerweise drei Spannungsniveaus, wozu ein Gleichspannungskreis vorgesehen ist, der durch einen ersten Kondensator und durch einen in Serie zum ersten Kondensator geschalteten zweiten Kondensator gebildet ist. Der Gleichspannungskreis weist weiterhin am ersten Kondensator einen ersten Hauptanschluss, am zweiten Kondensator einen zweiten Hauptanschluss und einen durch die zwei seriell miteinander verbundenen Kondensatoren gebildeten Teilanschluss auf. Weiterhin umfasst der Umrichter zur Schaltung von drei Spannungsniveaus Leistungshalbleiterschalter, welche in üblicher Weise verschaltet sind.

Während des Betriebs der Umrichterschaltung kann es nun vorkommen, dass entweder die am ersten Kondensator anliegende erste Gleichspannung grösser ist als die am zweiten Kondensator anliegende zweite Gleichspannung, oder dass die zweite Gleichspannung grösser ist als die erste Gleichspannung. Um dieser Unsymmetrie entgegenzuwirken, ist in "A comprehensive study of neutral-point voltage balancing problem in three-level NPC voltage source PWM inverter, IEEE Transactions on power electronics, Vol 15, No 2, March 2000, p. 242" ein Verfahren zur Symmetrierung eines Gleichspannungskreises einer Umrichterschaltung zur Schaltung von drei Spannungsniveaus angegeben. Zunächst wird aus einer am ersten Kondensator anliegenden ersten Gleichspannung und aus einer am zweiten Kondensator anliegenden zweiten Gleichspannung ein Gleichspannungsdifferenzwert gebildet. Weiterhin wird gemäss "A comprehensive study of neutral-point voltage balancing problem in three-level NPC voltage source PWM inverter, IEEE Transactions on power electronics, Vol 15, No 2, March 2000, p. 242" jede Phase der Umrichterschaltung durch Leistungshalbleiterschalter der Umrichterschaltung nach jeweils einer vorgegebenen Abfolge, sogenanntes Pulsmuster, von Schaltzuständen innerhalb einer vorgegebenen Zeitdauer mit dem ersten Hauptanschluss, mit dem zweiten Hauptanschluss oder mit dem Teilanschluss des Gleichspannungskreises verbunden, wobei die Schaltzustände der Phasen zueinander durch Schaltzustandskombinationen vorgegeben sind. In einem in Fig. 2a gezeigten Zustandsdiagramm sind diese Schaltzustandkombinationen und deren Übergänge zueinander gezeigt, wobei die "+" für eine Verbindung der entsprechenden Phase mit dem ersten Hauptanschluss, "-" für eine Verbindung der entsprechenden Phase mit dem zweiten Hauptanschluss und "0" für eine Verbindung der entsprechenden Phase mit dem Teilanschluss steht.

Darüber hinaus wird der vorstehend genannte Gleichspannungsdifferenzwert auf einen vorgebbaren ersten Schwellwert hin überwacht, wobei bei Überschreiten des ersten Schwellwertes, d.h. falls die erste Gleichspannung grösser ist als die zweite Gleichspannung, oder bei Unterschreiten des ersten Schwellwertes, d.h. falls die zweite Gleichspannung grösser ist als die erste Gleichspannung, die drei Phasen nach einer aus den Schaltzustandskombinationen ausgewählten Schaltzustandskombination mit dem ersten Hauptanschluss, mit dem zweiten Hauptanschluss oder mit dem Teilanschluss verbunden werden. Die Auswahl der geeigneten Schaltzustandskombination erfolgt in Abhängigkeit der vorangehenden Schaltzustandskombination, der Flussrichtung eines Phasenstromes und des Überschreitens oder des Unterschreitens des ersten Schwellwertes. Durch die vorstehend beschriebene Verbindung der drei Phasen mit dem ersten Hauptanschluss, mit dem zweiten Hauptanschluss oder mit dem Teilanschluss wird erreicht, dass beispielsweise bei einer auftretenden Unsymmetrie des Gleichspannungskreises im Betriebsfall der Umrichterschaltung, d.h. falls zum Beispiel die erste Gleichspannung betragsmässig grösser als die zweite Gleichspannung ist, die erste Gleichspannung betragsmässig verringert wird, so dass eine betragsmässige Angleichung an die zweite Gleichspannung erfolgt und somit eine symmetrische Verteilung der beiden Gleichspannungen des Gleichspannungskreis erzielt werden kann.

Problematisch bei dem in "A comprehensive study of neutral-point voltage balancing problem in three-level NPC voltage source PWM inverter, IEEE Transactions on power electronics, Vol 15, No 2, March 2000, p. 242" beschriebenen Verfahren zur Symmetrierung eines Gleichspannungskreises einer Umrichterschaltung zur Schaltung von drei Spannungsniveaus ist, dass bei einem grossen Modulationsgrad, insbesondere in der Grössenordnung zwischen 0.8 und 1, d.h. wenn die Umrichterschaltung nahezu voll ausgesteuert ist, nur Schaltzustandskombinationen für die Abfolgen der Phasen möglich sind, die sich gemäss dem in Fig. 2a gezeigten Zustandsdiagramm an den äusseren Punkten des Zustandsdiagramms befinden. Mittels dieser Schaltzustandskombinationen ist aber eine Symmetrierung des Gleichspannungskreises bei einer auftretenden Unsymmetrie des Gleichspannungskreises während des Betriebs der Umrichterschaltung nicht möglich, da die erste und zweite Gleichspannung durch diese Schaltzustandskombinationen nicht verringert oder vergrössert werden kann und somit nicht für eine Symmetrierung des Gleichspannungskreises beeinflusst werden kann.

Darstellung der Erfindung

Aufgabe der Erfindung ist es deshalb, ein Verfahren zur Symmetrierung eines Gleichspannungskreises einer Umrichterschaltung zur Schaltung von drei Spannungsniveaus anzugeben, durch welches auch bei einer hohen Aussteuerung, d.h. bei einem grossen Modulationsgrad, Ungleichheiten in den Beträgen von Gleichspannungen an Kondensatoren des Gleichspannungskreises in einfacher Weise kompensiert werden können. Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. In den abhängigen Ansprüchen sind vorteilhafte Weiterbildungen der Erfindung angegeben.

Beim erfindungsgemässen Verfahren zur Symmetrierung eines Gleichspannungskreises einer Umrichterschaltung zur Schaltung von drei Spannungsniveaus ist der Gleichspannungskreis durch einen ersten Kondensator und durch einen in Serie zum ersten Kondensator geschalteten zweiten Kondensator gebildet und weist weiterhin am ersten Kondensator einen ersten Hauptanschluss, am zweiten Kondensator einen zweiten Hauptanschluss und einen durch die zwei seriell verbundenen Kondensatoren gebildeten Teilanschluss auf, wobei aus einer am ersten Kondensator anliegenden ersten Gleichspannung und aus einer am zweiten Kondensator anliegenden zweiten Gleichspannung ein Gleichspannungsdifferenzwert gebildet wird. Ferner wird jede Phase der Umrichterschaltung durch Leistungshalbleiterschalter der Umrichterschaltung nach jeweils einer vorgegebenen Abfolge von Schaltzuständen innerhalb einer vorgegebenen Zeitdauer mit dem ersten Hauptanschluss, mit dem zweiten Hauptanschluss oder mit dem Teilanschluss verbunden, wobei die Schaltzustände der Phasen zueinander durch Schaltzustandskombinationen vorgegeben sind. Darüber hinaus wird der Gleichspannungsdifferenzwert auf einen vorgebbaren ersten Schwellwert hin überwacht wird, wobei bei Überschreiten oder Unterschreiten des ersten Schwellwertes die Phasen nach einer aus den Schaltzustandskombinationen in Abhängigkeit der vorangehenden Schaltzustandskombination, der Flussrichtung eines Phasenstromes und des Überschreitens oder des Unterschreitens des ersten Schwellwertes ausgewählten Schaltzustandskombination mit dem ersten Hauptanschluss, mit dem zweiten Hauptanschluss oder mit dem Teilanschluss verbunden werden.

Erfindungsgemäss wird desweiteren der Modulationsgrad für jede Phase fortlaufend ermittelt und auf einen vorgebbaren Modulationsgradschwellwert hin überwacht. Bei Über- oder Unterschreiten des ersten Schwellwertes und bei Überschreiten des Modulationsgradschwellwertes wird dann der Modulationsgrad erfindungsgemäss durch Auswahl einer Abfolge aus den vorgegebenen Abfolgen für einen wählbaren Zeitraum verringert. Vorteilhaft kann durch die Verringerung des Modulationsgrades für einen bestimmten wählbaren Zeitraum die erste Gleichspannung beziehungsweise die zweite Gleichspannung sehr einfach beeinflusst werden, derart, dass Ungleichheiten in den Beträgen zwischen der ersten und zweiten Gleichspannung kompensiert werden können und somit eine Symmetrierung des Gleichspannungskreises in sehr einfacher Weise erfolgt. Die Verringerung des Modulationsgrades mittels einer bestimmten vorgegebenen Abfolge von Schaltzuständen für einen bestimmten wählbaren Zeitraum ermöglicht es mit Vorteil zudem, die gewünschte Symmetrierung des Gleichspannungskreises auch bei einer hohen Aussteuerung der Umrichterschaltung, d.h. bei einem grossen Modulationsgrad zu erreichen.

Diese und weitere Aufgaben, Vorteile und Merkmale der vorliegenden Erfindung werden aus der nachfolgenden detaillierten Beschreibung bevorzugter Ausführungsformen der Erfindung in Verbindung mit der Zeichnung offensichtlich.

Kurze Beschreibung der Zeichnungen

Es zeigen:

Fig. 1
eine Ausführungsform einer dreiphasigen Umrichterschaltung zur Schaltung von drei Spannungsniveaus,
Fig. 2a
ein Zustandsdiagramm mit Schaltzustandkombinationen der Phasen der Umrichterschaltung,
Fig. 2b
typische Zeitverläufe der Phasenspannungen der Umrichterschaltung nach Fig. 1,
Fig. 2c
eine Tabelle mit aus Fig. 2a ausgewählten Schaltzustandskombinationen und
Fig. 3
ein Zeitverlauf einer Phasenspannung und zugehörigem Modulationsgrad.

Die in der Zeichnung verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsformen stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.

Wege zur Ausführung der Erfindung

In Fig. 1 ist eine Ausführungsform einer dreiphasigen Umrichterschaltung zur Schaltung von drei Spannungsniveaus gezeigt. Die Umrichterschaltung nach Fig. 1 weist einen Gleichspannungskreis 1 auf, der durch einen ersten Kondensator C1 und durch einen in Serie zum ersten Kondensator C1 geschalteten zweiten Kondensator C2 gebildet ist. Weiterhin weist der Gleichspannungskreis 1 am ersten Kondensator C1 einen ersten Hauptanschluss V+, am zweiten Kondensator C2 einen zweiten Hauptanschluss V- und einen durch die zwei seriell verbundenen Kondensatoren C1, C2 gebildeten Teilanschluss NP auf. Darüber hinaus umfasst die Umrichterschaltung gemäss Fig. 1 ein für jede Phase u, v, w vorgesehenes Teilumrichtersystem 4, welches jeweils durch eine erste Schaltgruppe 5, durch eine zweite Schaltgruppe 6 und durch eine dritte Schaltgruppe 7 gebildet ist, wobei jede Schaltgruppe 5, 6, 7 durch zwei in Serie geschaltete Leistungshalbleiterschalter gebildet ist. Weiterhin ist bei jedem Teilumrichtersystem 4 die erste Schaltgruppe 5 mit dem ersten Hauptanschluss V+ und die zweite Schaltgruppe 6 mit dem zweiten Hauptanschluss V- verbunden. Ferner ist die erste Schaltgruppe 5 mit der zweiten Schaltgruppe 6 seriell verbunden, wobei der Verbindungspunkt der ersten Schaltgruppe 5 mit der zweiten Schaltgruppe 6 einen Phasenanschluss bildet. Die dritte Schaltgruppe 7, welche als Klemmschaltgruppe ausgebildet ist, ist mit der ersten Schaltgruppe 5, insbesondere mit dem Verbindungspunkt der zwei in Serie geschalteten Leistungshalbleiterschalter der ersten Schaltgruppe 5, verbunden. Zudem ist die dritte Schaltgruppe 7 mit der zweiten Schaltgruppe 6, insbesondere mit dem Verbindungspunkt der zwei in Serie geschalteten Leistungshalbleiterschalter der zweiten Schaltgruppe 6, verbunden. Darüber hinaus ist die dritte Schaltgruppe 7, insbesondere der Verbindungspunkt der zwei in Serie geschalteten Leistungshalbleiterschalter der dritten Schaltgruppe 7, mit dem Teilanschluss NP verbunden. Die Leistungshalbleiterschalter der ersten und zweiten Schaltgruppe 5, 6 sind gemäss Fig. 1 als ansteuerbare bidirektionale Leistungshalbleiterschalter ausgebildet, wobei die Leistungshalbleiterschalter der dritten Schaltgruppe als unidirektionale nicht-ansteuerbare Halbleiterschalter ausgebildet sind. Es ist aber auch denkbar, das auch die Leistungshalbleiterschalter der dritten Schaltgruppe als ansteuerbare bidirektionale Leistungshalbleiterschalter ausgebildet sind.

Beim erfindungsgemässen Verfahren wird nun aus einer am ersten Kondensator C1 anliegenden ersten Gleichspannung UDC1 und aus einer am zweiten Kondensator C2 anliegenden zweiten Gleichspannung UDC2 ein Gleichspannungsdifferenzwert UNP gebildet. Der GleichspannungsdifferenzwertUNP wird dabei nach folgender Formel generiert: UNP=|UDC1|-|UDC2|

Ferner wird jede Phase u, w, v der Umrichterschaltung durch die Leistungshalbleiterschalter nach jeweils einer vorgegebenen Abfolge PM von Schaltzuständen innerhalb einer vorgegebenen Zeitdauer mit dem ersten Hauptanschluss V+, mit dem zweiten Hauptanschluss V- oder mit dem Teilanschluss NP verbunden, wobei die Schaltzustände der Phasen u, v, w zueinander durch Schaltzustandskombinationen SK vorgegeben sind. Wie bereits eingangs erwähnt, ist in Fig. 2a ein Zustandsdiagramm dieser Schaltzustandskombinationen SK gezeigt, wobei "+" für eine Verbindung der entsprechenden Phase u, v, w mit dem ersten Hauptanschluss V+, "-" für eine Verbindung der entsprechenden Phase u, v, w mit dem zweiten Hauptanschluss V- und "0" für eine Verbindung der entsprechenden Phase u, v, w mit dem Teilanschluss NP steht und die Linien zwischen den Schaltzustandskombinationen SK zulässige Übergänge zwischen den Schaltzustandskombinationen SK darstellen. In Fig. 2b sind typische Zeitverläufe der Phasenspannungen Uu, Uv, Uw der Umrichterschaltung nach Fig. 1 dargestellt. Darin ist detailliert gezeigt, wie die einzelnen Phasenspannung Uu, Uv, Uw durch die jeweiligen Abfolgen PM von Schaltzuständen gebildet werden, wobei als Beispiel bei der Phasenspannung Uu für die Phase U eine Abfolge PM für die erste Hälfte der Periodendauer der Phasenspannung Uu als vorstehend genannte vorgegebene Zeitdauer und eine Abfolge PM für die zweite Hälfte der Periodendauer der Phasenspannung Uu als vorstehend genannte vorgegebene Zeitdauer speziell gekennzeichnet ist. Die Phasenspannungen Uv, Uw der Phase v und Phase w ergeben sich gemäss Fig. 2b aus der Phasenspannung Uu durch eine Phasenverschiebung um 120° beziehungsweise um 240°. Solche Abfolgen werden gängigerweise auch als sogenannte Pulsmuster bezeichnet. Bei den Schaltzuständen gemäss Fig. 2b werden nur Spannungen UV+, 0 oder UV- geschaltet, wobei bei einem symmetrischen Gleichspannungskreis 1 UDC1=UDC2=UV+=-UV- ist. Ferner ist in Fig. 2b beispielhaft eine Schaltzustandskombination SK der Phasen u, v, w zueinander zum Zeitpunkt t=x herausgestellt, welche sich zu SK="+ - 0" ergibt und der Schaltzustandskombination 21 gemäss Fig. 2a entspricht.

Beim erfindungsgemässen Verfahren wird nun weiterhin der vorstehend erwähnte GleichspannungsdifferenzwertUNP auf einen vorgebbaren ersten Schwellwert UDCS1 hin überwacht, wobei bei Überschreiten oder Unterschreiten des ersten Schwellwertes UDCS1 die Phasen u, v, w nach einer aus den Schaltzustandskombinationen SK in Abhängigkeit der vorangehenden Schaltzustandskombination SK, der Flussrichtung eines Phasenstromes iu, iv, iw und des Überschreitens oder des Unterschreitens des ersten Schwellwertes UDCS1 ausgewählten Schaltzustandskombination SK mit dem ersten Hauptanschluss V+, mit dem zweiten Hauptanschluss V- oder mit dem Teilanschluss NP verbunden werden. Durch die vorstehend beschriebenen Massnahmen, d.h. durch die Verbindung der drei Phasen u, v, w mit dem ersten Hauptanschluss V+, mit dem zweiten Hauptanschluss V- oder mit dem Teilanschluss NP wird insbesondere bei kleinen und mittleren Aussteuerungen der Umrichterschaltung, d.h. bei Modulationsgraden m unter 0,8 , erreicht, dass beispielsweise bei einer auftretenden Unsymmetrie des Gleichspannungskreises 1 im Betriebsfall der Umrichterschaltung, d.h. falls zum Beispiel die ersten Gleichspannung UDC1 betragsmässig grösser als die zweite Gleichspannung UDC2 ist, die erste Gleichspannung UDC1 betragsmässig verringert wird, so dass eine betragsmässige Angleichung an die zweite Gleichspannung UDC2 erfolgt und somit eine symmetrische Verteilung der beiden Gleichspannungen UDC1, UDC2 des Gleichspannungskreis 1 erzielt werden kann.

Erfindungsgemäss wird desweiteren der Modulationsgrad m für jede Phase fortlaufend ermittelt und auf einen vorgebbaren Modulationsgradschwellwert Sm hin überwacht. Der Modulationsgrad m ergibt sich dabei beispielhaft für die Phase u gemäss folgender Formel zu m = Ûu / (UDC1) ·4 / (π) wobei Ûu der Amplitudenwert der Phasenspannung Uu ist. Für die anderen Phasen v, w ergibt sich der Modulationsgrad m in ähnlicher Weise. Bei Über- oder Unterschreiten des ersten Schwellwertes UDCS1 und bei Überschreiten des Modulationsgradschwellwertes Sm wird dann der Modulationsgrad m erfindungsgemäss durch Auswahl einer Abfolge PM aus den vorgegebenen Abfolgen PM für einen wählbaren Zeitraum verringert. Vorteilhaft kann durch die Verringerung des Modulationsgrades m für einen bestimmten wählbaren Zeitraum die erste Gleichspannung UDC1 beziehungsweise die zweite Gleichspannung UDC2 sehr einfach beeinflusst werden, da durch die Verringerung des Modulationsgrades m die aus dem ersten Kondensator C1 beziehungsweise aus dem zweiten Kondensator C2 bezogene Energie verringert wird. Dies geschieht derart, dass Ungleichheiten in den Beträgen zwischen der ersten und zweiten Gleichspannung UDC1, UDC2 kompensiert werden können und somit eine Symmetrierung des Gleichspannungskreises 1 in sehr einfacher Weise erzielt werden kann. Die Verringerung des Modulationsgrades m mittels einer bestimmten vorgegebenen Abfolge PM von Schaltzuständen für einen bestimmten wählbaren Zeitraum ermöglicht es zudem, die gewünschte Symmetrierung des Gleichspannungskreises 1 auch bei einer hohen Aussteuerung der Umrichterschaltung, d.h. bei einem grossen Modulationsgrad m, insbesondere bei m grösser als 0,8 , zu erreichen.

Beim erfindungsgemässen Verfahren hat es sich weiterhin als besonders vorteilhaft erwiesen, als Zeitraum für die Verringerung des Modulationsgrades m einer jeden Phase u, v, w bei motorischem Betrieb der Umrichterschaltung und bei Überschreiten des ersten Schwellwertes UDCS1 oder bei generatorischem Betrieb der Umrichterschaltung und bei Unterschreiten des ersten Schwellwertes UDCS1 die negative Halbschwingung der zugehörigen Phasenspannungsgrundschwingung zu wählen. In Fig. 3 ist der Zeitverlauf der Phasenspannung Uu und zugehörigem Modulationsgrad beispielhaft für den Fall dargestellt, bei dem die Umrichterschaltung motorisch betrieben wird, d.h. dass zu den Phasen u, v, w elektrische Energie, beispielsweise zu einer elektrischen Last fliesst, und bei dem der erste Schwellwert UDCS1 zu irgendeinem Zeitpunkt überschritten, d.h. wenn die erste Gleichspannung UDC1 betragsmässig grösser als die zweite Gleichspannung UDC2 ist. Es sei an dieser Stelle erwähnt, dass der Zeitverlauf der Phasenspannung Uu und des Modulationsgrades m gemäss Fig. 3 auch für den Fall gilt, bei dem die Umrichterschaltung generatorisch betrieben wird, d.h. dass von den Phasen u, v, w elektrische Energie, beispielsweise von einer elektrischen Last fliesst, und bei dem der erste Schwellwert UDCS1 zu irgendeinem Zeitpunkt unterschritten wird, d.h. wenn die erste Gleichspannung UDC1 betragsmässig kleiner als die zweite Gleichspannung UDC2 ist. Der Vollständigkeit halber ist in Fig. 3 der Zeitverlauf der zur Phasenspannung Uu zugehörigen Phasenspannungsgrundschwingung eingezeichnet. Zeitverläufe der anderen Phasenspannungen Uv, Uw, welche der Übersichtlichkeit halber in Fig. 3 nicht dargestellt sind, würden sich aus der Phasenspannung Uu durch eine Phasenverschiebung um 120° beziehungsweise um 240° ergeben.

Ferner hat es sich als sehr vorteilhaft gezeigt, wenn als Zeitraum für die Verringerung des Modulationsgrades m einer jeden Phase u, v, w bei generatorischem Betrieb der Umrichterschaltung und bei Überschreiten des ersten Schwellwertes UDCS1 oder bei motorischem Betrieb der Umrichterschaltung und bei Unterschreiten des ersten Schwellwertes UDCS1 die positive Halbschwingung der zugehörigen Phasenspannungsgrundschwingung gewählt wird.

Der vorstehend für die einzelnen Fälle genannte jeweilige Zeitraum entspricht der bereits erwähnten ersten beziehungsweise zweiten Hälfte der Periodendauer der entsprechenden Phasenspannung Uu, Uv, Uw. Vorteilhaft kann durch die Verringerung des Modulationsgrades m für den vorstehend genannten jeweiligen Zeitraum die erste Gleichspannung UDC1 beziehungsweise die zweite Gleichspannung UDC2 fallspezifisch, d.h. je nach Betriebszustand der Umrichterschaltung, sehr einfach beeinflusst werden und zwar derart, dass Ungleichheiten in den Beträgen zwischen der ersten und zweiten Gleichspannung UDC1, UDC2 kompensiert werden können und somit eine Symmetrierung des Gleichspannungskreises 1 in sehr einfacher Weise erreicht werden kann.

Vorzugsweise wird zur Verringerung des Modulationsgrades m eine Abfolge gewählt, welche den Modulationsgrad m in der Grössenordnung um 1% bis 2% bezüglich des eigentlich zu diesem Zeitpunkt vorgesehenen Modulationsgrades m verringert.

Wie bereits vorstehend detailliert beschrieben wurde, werden bei einem Modulationsgrad m unterhalb des Modulationsgradschwellwertes Sm und bei Überschreiten oder Unterschreiten des ersten Schwellwertes UDCS1 die Phasen u, v, w nach einer aus den Schaltzustandskombinationen SK in Abhängigkeit der vorangehenden Schaltzustandskombination SK, der Flussrichtung eines Phasenstromes iu, iv, iw und des Überschreitens oder des Unterschreitens des ersten Schwellwertes UDCS1 ausgewählten Schaltzustandskombination SK mit dem ersten Hauptanschluss V+, mit dem zweiten Hauptanschluss V- oder mit dem Teilanschluss NP verbunden. Vorzugsweise wird bei der ausgewählten Schaltzustandskombination SK nur eine Anzahl der Phasen u, v, w mit dem ersten Hauptanschluss V+ und die restliche Anzahl der Phasen u, v, w mit dem Teilanschluss NP oder nur eine Anzahl der Phasen u, v, w mit dem zweiten Hauptanschluss V- und der restliche Teil der Phasen u, v, w mit dem Teilanschluss NP verbunden wird. Diese ausgewählten Schaltzustandskombinationen SK sind in einer Tabelle gemäss Fig. 2c zusammengestellt, treten paarweise auf und sind aus Fig. 2a ausgewählte Schaltzustandkombinationen SK. Soll beispielsweise gemäss Fig. 2a von der Schaltzustandskombination SK=12 über SK=10 oder SK=11 nach SK=13 geschaltet werden und fliesst gemäss Fig. 2c ein positiver Phasenstrom iu der Phase u, d.h. die Flussrichtung des Phasenstromes iu ist wie in Fig. 1 gezeigt zur entsprechenden Phase u, beispielsweise zu einer elektrischen Last, gerichtet, und ist der erste Schwellwert UDCS1 überschritten, dann wird gemäss Fig. 2c als Schaltzustandskombination SK =10 gewählt. Mittels der ausgewählten Schaltzustandskombinationen SK gemäss Fig. 2c wird somit mit Vorteil erreicht, dass Ungleichheiten in den Beträgen zwischen der ersten und zweiten Gleichspannung UDC1, UDC2 sehr spezifisch, d.h. nach den Fallunterscheidungen gemäss Fig. 2c, ausgeglichen werden können und somit eine Symmetrierung des Gleichspannungskreises 1 in sehr einfacher Weise und ohne nennenswerte Schaltverluste der Umrichterschaltung erzielt werden kann. Weiterhin kann eine Symmetrierung des Gleichspannungskreises 1 durch die vorstehend beschriebene Massnahme schnell und ohne Spannungsänderung für eine an die Phasen u, v, w angeschlossenen elektrischen Last.

Der erste Schwellwert UDCS1 wird vorzugsweise in der Grössenordnung zwischen 0 und 0.03 gewählt, so dass auftretende Ungleichheiten in den Beträgen zwischen der ersten und zweiten Gleichspannung UDC1, UDC2 durch die vorstehend genannten Verfahrensschritte bei Überschreiten und Unterschreiten des ersten Schwellwertes UDCS1 sehr frühzeitig und damit sehr schnell ausgeglichen werden können.

Desweiteren wird der Modulationsgradschwellwert Sm vorzugsweise in der Grössenordnung von 0,8 gewählt, so dass auftretende Ungleichheiten in den Beträgen zwischen der ersten und zweiten Gleichspannung UDC1, UDC2 durch die vorstehend genannten Verfahrensschritte bei Überschreiten und Unterschreiten des ersten Schwellwertes UDCS1 und bei Überschreiten des Modulationsgradschwellwertes Sm sehr frühzeitig und damit sehr schnell ausgeglichen werden können.

Beim erfindungsgemässen Verfahren wird der Gleichspannungsdifferenzwert UNP zudem auf einen vorgebbaren zweiten Schwellwert UDCS2 hin überwacht. Der zweite Schwellwert UDCS2 ist dabei betragsmässig grösser als der erste Schwellwert UDCS1. Bei Überschreiten des ersten Schwellwertes UDCS1 und bei Überschreiten des zweiten Schwellwertes UDCS2 wird gemäss Fig. 1 erfindungsgemäss eine erste parallel zum ersten Kondensator C1 geschaltete Spannungsreduziereinrichtung 2 betätigt. Bei Unterschreiten des ersten Schwellwertes UDCS1 und bei Unterschreiten des zweiten Schwellwertes UDCS2 wiederum wird eine zweite parallel zum zweiten Kondensator C2 geschaltete Spannungsreduziereinrichtung 3 betätigt. Die Betätigung der ersten oder zweiten Spannungsreduziereinrichtung 2, 3 kann sowohl bei unterschrittenem Modulationsgradschwellwert Sm oder bei bereits überschrittenem Modulationsgradschwellwert Sm und der darauf folgenden und vorstehend bereits im Detail erläuterten Verringerung des Modulationsgrades m erfolgen. Massgebend für die Betätigung der ersten oder zweiten Spannungsreduziereinrichtung 2, 3 ist nur das Überschreiten oder Unterschreiten des zweiten Schwellwertes UDCS2. Gemäss Fig. 1 ist die erste und zweite Spannungsreduziereinrichtung 2, 3 jeweils durch einen Widerstand und einen in Serie zum Widerstand geschalteten Schalter gebildet, wobei und die erste und zweite Spannungsreduziereinrichtung 2, 3 durch Schliessen des zugehörigen Schalters betätigt wird. Vorzugsweise erfolgt die Schliessung des ersten Schalters unmittelbar bei Überschreiten des zweiten Schwellwertes UDCS2 und die Schliessung des zweiten Schalters unmittelbar bei Unterschreiten des zweiten Schwellwertes UDCS2. Vorteilhaft wird bei der Betätigung des jeweiligen Schalters Energie des zugehörigen Kondensators C1, C2 in Wärme im zugehörigen Widerstand umgesetzt und somit die zugehörige Gleichspannung UDC1, UDC2 einfach, schnell und effektiv verringert, so dass die betragsmässige Angleichung der beiden Gleichspannungen UDC1, UDC2 in erwünschtem Masse erfolgt. Vorzugsweise erfolgt die Betätigung der ersten und zweiten Spannungsreduziereinrichtung jeweils für eine vorgegebene Zeitdauer. Diese Zeitdauer wird vorzugsweise in Abhängigkeit der thermischen Kapazität des Widerstandes vorgegeben.

Insgesamt stellt das erfindungsgemässe Verfahren zur Symmetrierung des Gleichspannungskreises 1 der Umrichterschaltung zur Schaltung von drei Spannungsniveaus eine sehr einfache, effiziente und somit kostengünstige Lösung dar, Ungleichheiten in den Beträgen der Gleichspannungen UDC1, UDC2 an den Kondensatoren C1, C2 des Gleichspannungskreises 1 bei einer hohen Aussteuerung der Umrichterschaltung zu kompensieren.

Bezugszeichenliste

1
Gleichspannungskreis
2
erste Spannungsreduziereinrichtung
3
zweite Spannungsreduziereinrichtung
4
Teilumrichtersystem
5
erste Schaltgruppe
6
zweite Schaltgruppe
7
dritte Schaltgruppe


Anspruch[de]
  1. Verfahren zur Symmetrierung eines Gleichspannungskreises einer Umrichterschaltung zur Schaltung von drei Spannungsniveaus, bei dem der Gleichspannungskreis (1) durch einen ersten Kondensator (C1) und durch einen in Serie zum ersten Kondensator (C1) geschalteten zweiten Kondensator (C2) gebildet ist und am ersten Kondensator (C1) einen ersten Hauptanschluss (V+), am zweiten Kondensator (C2) einen zweiten Hauptanschluss (V-) und einen durch die zwei seriell verbundenen Kondensatoren (C1, C2) gebildeten Teilanschluss (NP) aufweist und aus einer am ersten Kondensator (C1) anliegenden ersten Gleichspannung (UDC1) und aus einer am zweiten Kondensator (C2) anliegenden zweiten Gleichspannung (UDC2) ein Gleichspannungsdifferenzwert (UNP) gebildet wird, wobei der Gleichspannungskreis (1),

    bei dem jede Phase (u, v, w) der Umrichterschaltung durch Leistungshalbleiterschalter der Umrichterschaltung nach jeweils einer vorgegebenen Abfolge (PM) von Schaltzuständen innerhalb einer vorgegebenen Zeitdauer mit dem ersten Hauptanschluss (V+), mit dem zweiten Hauptanschluss (V-) oder mit dem Teilanschluss (NP) verbunden wird, wobei die Schaltzustände der Phasen (u, v, w) zueinander durch Schaltzustandskombinationen (SK) vorgegeben sind,

    bei dem der Gleichspannungsdifferenzwert (UNP) auf einen vorgebbaren ersten Schwellwert (UDCS1) hin überwacht wird, und

    bei dem bei Überschreiten oder Unterschreiten des ersten Schwellwertes (UDCS1) die Phasen (u, v, w) nach einer aus den Schaltzustandskombinationen (SK) in Abhängigkeit der vorangehenden Schaltzustandskombination (SK), der Flussrichtung eines Phasenstromes (iu, iv, iw) und des Überschreitens oder des Unterschreitens des ersten Schwellwertes (UDCS1) ausgewählten Schaltzustandskombination (SK) mit dem ersten Hauptanschluss (V+), mit dem zweiten Hauptanschluss (V-) oder mit dem Teilanschluss (NP) verbunden werden, dadurch gekennzeichnet,

    dass der Modulationsgrad (m) für jede Phase (u, v, w) fortlaufend ermittelt wird und auf einen vorgebbaren Modulationsgradschwellwert (Sm) hin überwacht wird, und

    dass bei Überschreiten oder Unterschreiten des ersten Schwellwertes (UDCS1) und bei Überschreiten des Modulationsgradschwellwertes (Sm) der Modulationsgrad (m) durch Auswahl einer Abfolge (PM) aus den vorgegebenen Abfolgen (PM) für einen wählbaren Zeitraum verringert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Zeitraum für die Verringerung des Modulationsgrades (m) einer jeden Phase (u, v, w) bei motorischem Betrieb der Umrichterschaltung und bei Überschreiten des ersten Schwellwertes (UDCS1) oder bei generatorischem Betrieb der Umrichterschaltung und bei Unterschreiten des ersten Schwellwertes (UDCS1) die negative Halbschwingung der zugehörigen Phasenspannungsgrundschwingung gewählt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2 dadurch gekennzeichnet, dass als Zeitraum für die Verringerung des Modulationsgrades (m) einer jeden Phase (u, v, w) bei generatorischem Betrieb der Umrichterschaltung und bei Überschreiten des ersten Schwellwertes (UDCS1) oder bei motorischem Betrieb der Umrichterschaltung und bei Unterschreiten des ersten Schwellwertes (UDCS1) die positive Halbschwingung der zugehörigen Phasenspannungsgrundschwingung gewählt wird.
  4. Verfahren einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der ausgewählten Schaltzustandskombination (SK) nur eine Anzahl der Phasen (u, v, w) mit dem ersten Hauptanschluss (V+) und die restliche Anzahl der Phasen (u, v, w) mit dem Teilanschluss (NP) oder nur eine Anzahl der Phasen (u, v, w) mit dem zweiten Hauptanschluss (V-) und der restliche Teil der Phasen (u, v, w) mit dem Teilanschluss (NP) verbunden wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Schwellwert (UDCS1) in der Grössenordnung von zwischen 0 und 0.03 gewählt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Modulationsgradschwellwert (Sm) in der Grössenordnung von 0,8 gewählt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gleichspannungsdifferenzwert (UNP) auf einen vorgebbaren zweiten Schwellwert (UDCS2) hin überwacht wird,

    bei Überschreiten des ersten Schwellwertes (UDCS1) und bei Überschreiten des zweiten Schwellwertes (UDCS2) eine erste parallel zum ersten Kondensator (C1) geschaltete Spannungsreduziereinrichtung (2) betätigt wird, und

    dass bei Unterschreiten des ersten Schwellwertes (UDCS1) und bei Unterschreiten des zweiten Schwellwertes (UDCS2) eine zweite parallel zum zweiten Kondensator (C2) geschaltete Spannungsreduziereinrichtung (3) betätigt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die erste und zweite Spannungsreduziereinrichtung (2, 3) jeweils durch einen Widerstand und einen in Serie zum Widerstand geschalteten Schalter gebildet ist und die erste und zweite Spannungsreduziereinrichtung (2, 3) durch Schliessen des zugehörigen Schalters betätigt wird.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Betätigung der ersten und zweiten Spannungsreduziereinrichtung (2, 3) jeweils für eine vorgegeben Zeitdauer erfolgt.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com