PatentDe  


Dokumentenidentifikation DE102005048566A1 12.04.2007
Titel Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke
Anmelder MAN Nutzfahrzeuge AG, 80995 München, DE
Erfinder Möller, Heribert, 91623 Sachsen, DE;
Wacker, Mathias, 90443 Nürnberg, DE;
Spaniol, Peter, 90513 Zirndorf, DE
DE-Anmeldedatum 11.10.2005
DE-Aktenzeichen 102005048566
Offenlegungstag 12.04.2007
Veröffentlichungstag im Patentblatt 12.04.2007
IPC-Hauptklasse F02F 1/26(2006.01)A, F, I, 20051011, B, H, DE
IPC-Nebenklasse F01P 3/02(2006.01)A, L, I, 20051011, B, H, DE   
Zusammenfassung Gegenstand der Erfindung ist eine selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke.
Es wird vorgeschlagen, die Brennraumabdichtung, die bei heute üblichen Brennkraftmaschinen des gattungsgemäßen Typs durch die Unterseite des Zylinderkopfes bewerkstelligt wird, bei zukünftigen Motoren mit stark erhöhten Zünddrücken durch ein separates Bauteil vorzunehmen. Es handelt sich dabei um eine zwischen dem Brennraum und dem Zylinderkopf angeordnete, die Deckfläche des Brennraumes bildende separate, mit dem Kurbelgehäuse und/oder der Zylinderlaufbuchse formschlüssig und gasdicht verbundene gekühlte Platte, in der die Ventilsitze wenigstens eines Einlassventils und wenigstens eines Auslassventils angeordnet sind und die von wenigstens einem Einspritzventil durchragt wird. Der Vorteil eines derartigen Bauteils liegt zum einen darin, dass die formschlüssige Verbindung der gekühlten Platte mit dem Kurbelgehäuse und/oder der Zylinderlaufbuchse unmittelbar an der Brennraumgrenze erfolgen kann, wodurch die Durchbiegung bei Druckbeaufschlagung schon aufgrund der wesentlich geringen Spannweiten gegenüber den heute üblichen Zylinderköpfen erheblich minimiert werden kann, andererseits eröffnet die Verwendung dieses von Kurbelgehäuse, Zylinderkopf und gegebenenfalls der Zylinderlaufbuchse separaten Bauteils völlig neue Möglichkeiten hinsichtlich der Materialauswahl. Die Kühlung der gekühlten Platte erfolgt dabei durch das für die Kühlung des Kurbelgehäuses und des ...

Beschreibung[de]

Gegenstand der Erfindung ist eine selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke gemäß dem Gattungsbegriff des Patentanspruches 1.

Bei heute üblichen Fahrzeugmotoren, insbesondere Motoren für Nutzfahrzeuge, sind Zünddrücke gebräuchlich die bereits sehr hohe Anforderungen an die Abdichtung der Brennräume stellen und die den Brennraum begrenzenden Komponenten, insbesondere den Zylinderkopf sehr hohen thermischen und mechanischen Belastungen aussetzen. In Folge dieser hohen Belastungen reicht oft die Kühlwirkung die über die Kühlkanäle im Zylinderkopf an der Brennraumdecke zur Verfügung gestellt werden kann für eine ausreichende Kühlung insbesondere in den Bereichen zwischen den Ventilen nicht aus. In Folge davon können sich sogenannte Stegrisse zwischen den Ventilöffnungen im Zylinderkopf einstellen und den Zylinderkopf und damit den Motor zerstören.

Parallel zu diesem bestehenden Problem ist es zur Erreichung der in Zukunft geforderten Abgaswerte einerseits und der ständig steigenden Anforderungen an die Literleistung der Brennkraftmaschinen bei gleichzeitiger Reduzierung des Gewichtes andererseits, unumgänglich die Zünddrücke in eine Größenordnung von bis zu 300 bar anzuheben, was nahezu einer Verdopplung gegenüber dem heute üblichen Standard gleichkommt. Derartige Anforderungen sind bei vertretbarem Aufwand hinsichtlich des Materialeinsatzes mit heute gebräuchlichen Motorkonstruktionen nicht zu erfüllen.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine Brennkraftmaschine anzugeben, die bei vertretbarem konstruktiven Aufwand sehr hohen Zünddrücken gewachsen ist.

Gelöst wird die Aufgabe durch die kennzeichnenden Merkmale des Anspruches 1, vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.

Die Erfindung geht davon aus, dass die heute übliche Brennraumabdichtung durch die Unterseite des Zylinderkopfes bei zukünftigen Motoren mit stark erhöhten Zünddrücken von einem separaten Bauteil übernommen werden muss. Es handelt sich dabei um eine zwischen dem Brennraum und dem Zylinderkopf angeordnete die Deckfläche des Brennraumes bildende separate, mit dem Kurbelgehäuse und/oder der Zylinderlaufbuchse formschlüssig und gasdicht verbundene gekühlte Platte, in der die Ventilsitze wenigstens eines Einlassventils und wenigstens eines Auslassventils angeordnet sind und die von dem wenigstens einen Einspritzventil durchragt wird. Der Vorteil eines derartigen Bauteils liegt zum einen darin, dass die formschlüssige Verbindung der gekühlten Platte mit dem Kurbelgehäuse und/oder der Zylinderlaufbuchse unmittelbar an der Brennraumgrenze erfolgen kann, wodurch die Durchbiegung bei Druckbeaufschlagung schon aufgrund der wesentlich geringeren Spannweiten gegenüber den heute üblichen Zylinderköpfen erheblich minimiert werden kann, andererseits eröffnet die Verwendung dieses von Kurbelgehäuse, Zylinderkopf und gegebenenfalls der Zylinderlaufbuchse separaten Bauteils völlig neue Möglichkeiten hinsichtlich der Materialauswahl. Die Kühlung der gekühlten Platte erfolgt dabei durch das für die Kühlung des Kurbelgehäuses und des Zylinderkopfes vorgesehene Kühlmedium, so dass die gekühlte Platte in das bestehende Kühlsystem vorteilhaft integrierbar ist.

Ein weiterer Vorteil der erfindungsgemäßen gekühlten Platte besteht darin, dass sich, durch die bessere Zugänglichkeit für die mechanische Bearbeitung, in die gekühlte Platte Kühlkanäle einbringen lassen die eine gegenüber herkömmlichen Zylinderköpfen deutlich verbesserte Kühlung des Brennraumdaches und der Ventilsitze zulassen. Die Kühlkanäle lassen sich dabei vorteilhaft als von der Umfangseite der gekühlten Platte ausgehende Bohrungen ausbilden, die vorteilhaft so in der gekühlten Platte verlaufen, dass sie andere Bohrungen schneiden und so ein verbundenes System von Bohrungen ausbilden. Dabei sind zumindest ein Teil der Bohrungen zur Umfangsseite hin wieder verschlossen um in vorteilhafter Weise das Zuströmen und Abströmen des Kühlmittels zu vereinfachen.

Die Versorgung der gekühlten Platte mit Kühlmittel kann dabei einfach und damit vorteilhaft so erfolgen, dass in der Umfangsseite und/oder im überstehenden Randbereich der die Deckfläche des Brennraums bildenden Flachseite der gekühlten Platte und/oder der der Deckfläche gegenüberliegenden Flachseite der gekühlten Platte Zuströmöffnungen und/oder Abströmöffnungen vorgesehen sind und die Versorgung der gekühlten Platte mit Kühlmittel direkt und/oder über das Kurbelgehäuse und/oder über den Zylinderkopf erfolgt. Damit eröffnet sich die Möglichkeit den Kühlmittelstrom optimal an die jeweiligen konstruktiven Gegebenheiten anzupassen.

Die erfindungsgemäße gekühlte Platte lässt sich sowohl bei buchsenlosen Brennräumen als auch bei Brennräumen, die eine in einer Zylinderbohrung angeordneten Buchse aufweisen, einsetzen. Bei Verwendung einer Buchse ist es besonders vorteilhaft, eine solche einzusetzen die über einen Bund verfügt, der sich an einem Balkon in der Zylinderbohrung abstützt.

Zur Versorgung der gekühlten Platte mit dem Kühlmittel ist es weiter von Vorteil die Zuström- und Abströmöffnungen in der gekühlten Platte als Bohrungen auszubilden, die mit entsprechenden Öffnungen im Zylinderkopf oder im Bund der Buchse oder im Kurbelgehäuse oder in einem separaten Kühlmittelverteilerrohr korrespondieren und die Kühlkanäle in der gekühlten Platte mit den Kühlmittelräumen im Zylinderkopf, im Kurbelgehäuse oder dem separaten Kühlmittelverteilerrohr verbinden. Dazu können jeweils im Übertrittsbereich Dichtmittel vorgesehen sein die ein Austreten des Kühlmediums sicher verhindern.

Durch die von Kurbelgehäuse und Zylinderkopf unabhängige separate Ausführung der gekühlten Platte eröffnet sich in vorteilhafter Weise die Möglichkeit der freien Materialauswahl, so dass für die gekühlte Platte hochfeste Metalllegierungen eingesetzt werden können, deren Einsatz sich für den Zylinderkopf oder das Kurbelgehäuse aus Kostengründen oder auch aus konstruktiven Gründen verbieten würde. Die Freiheit in der Materialauswahl eröffnet auch die Möglichkeit neben einer Variante der gekühlten Platte mit eingesetzten Ventilsitzringen eine solche zu realisieren, bei der die Ventilsitze in vorteilhafter Weise in die einstückige gekühlte Platte eingearbeitet sind.

Zur Brennraumabdichtung ist es darüber hinaus von Vorteil, die gekühlte Platte mit einem zylinderförmigen Ansatz zu versehen, dessen Außendurchmesser dem Innendurchmesser des Brennraumes im wesentlichen entspricht wobei der zylinderförmige Ansatz im montierten Zustand im Innern der Zylinderbohrung bzw. der Buchse liegt, so dass die gekühlte Platte den oberen Rand des Brennraumes winkelförmig umgreift. Dabei ist es für die Abdichtung besonders förderlich den Durchmesser des zylinderförmigen Ansatzes so zu wählen, dass sich zwischen ihm und dem Brennraumdurchmesser ein Presssitz ergibt. Darüber hinaus kann es zur Abdichtung des Brennraums von Vorteil sein, eine Dichtung zwischen dem den Brennraum überlappenden Teil der gekühlten Platte und dem Kurbelgehäuse bzw. dem Buchsenbund vorzusehen.

Die Verbindung der gekühlten Platte mit dem Kurbelgehäuse bzw. falls vorhanden dem Buchsenbund wird vorteilhaft durch Verschrauben der gekühlten Platte mit dem Kurbelgehäuse bzw. dem Buchsenbund mittels Schrauben bewerkstelligt, dabei sind die Schrauben vorteilhaft möglichst dicht am Brennraumrand anzuordnen um die Durchbiegung der gekühlten Platte während der Zündvorgänge zu minimieren. Alternativ zu dieser Art der Befestigung ist es bei Brennräumen die eine Buchse aufweisen möglich, mittels eines Innengewindes am oberen Buchsenrand und eines Außengewindes am Umfang des zylinderförmigen Ansatzes, die gekühlte Platte mit der Buchse zu verschrauben, so dass die Verbindung zwischen Buchse und gekühlter Platte in besonders günstiger Weise unmittelbar am Brennraumrand erfolgt. Eine weitere einfache und damit günstige Möglichkeit die gekühlte Platte mit der Buchse zu verbinden besteht im Verschweißen dieser beiden Bauteile miteinander.

Zur Verbesserung des Wirkungsgrades der Brennkraftmaschine und/oder des Verschleißes an den Ventilsitzen kann die gekühlte Platte auf ihrer dem Brennraum zugewandten Seite mit einer Beschichtung geringer Wärmeleitfähigkeit und/oder hoher Verschleißfestigkeit versehen sein, wobei die Beschichtung mit geringer Wärmeleitfähigkeit den Wärmeverlust des Brennraumgases minimiert und damit den Wirkungsgrad vorteilhaft erhöht und eine verschleißmindernde Beschichtung an den Ventilsitzen die Lebensdauer positiv beeinflusst.

Um in der gekühlten Platte in unterschiedlichen Ebenen unterschiedliche Materialeigenschaften zu erzeugen kann es von Vorteil sein, die gekühlte Platte in Schichten aus parallelen Platten mit unterschiedlichen Materialeigenschaften aufzubauen, wobei wenigstens eine der innenliegenden parallelen Platte mit dem Kühlsystem der Brennkraftmaschine verbundene Ausnehmungen aufweist. Durch den Aufbau aus einem Paket paralleler Platten lassen sich sowohl die Kühlkanäle als auch die Kühlmittelzuführungen bzw. die Kühlmittelabführungen besonders einfach und damit vorteilhaft durch z. B. Ausstanzungen an einer oder an mehreren der parallelen Platten erzeugen. Zur Erhöhung der Biegesteifigkeit des Verbundes ist es vorgesehen, benachbarte Platten des Plattenpaketes miteinander zu verbinden.

Der Zylinderkopf, der sich auf der dem Brennraum abgewanden Seite an die gekühlte Platte anschließt, kann als jeweils einem Zylinder zugeordneter Einzelzylinderkopf oder als mehreren oder allen Zylindern zugeordneter durchgehender Zylinderkopf ausgebildet sein und beinhaltet neben den Gaswechselkanälen wenigstens ein Einspritzventil sowie die Führungen für die Einlass- und Auslassventile. Zur weiteren Minimierung der Durchbiegung der gekühlten Platte während der Zündvorgänge ist der Zylinderkopf vorteilhaft so ausgebildet, dass er die gekühlte Platte zumindest im Bereich ihres Zentrums druckbeaufschlagt. Um den Zylinderkopf in vorteilhafter Weise möglichst biegesteif zu gestalten sind die Kühlmittelräume unterteilende, zumindest senkrecht zur Flachseite der gekühlten Platte verlaufende Schottwände vorgesehen, die insbesondere im Zentrum der gekühlten Platte auftretende Kräfte in die Zylinderkopfbefestigungen im Kurbelgehäuse ableiten. Durch den Einsatz der erfindungsgemäßen gekühlten Platte eröffnen sich auch hinsichtlich des Zylinderkopfes Möglichkeiten der Materialwahl, die bei herkömmlichen Brennkraftmaschinen für Nutzfahrzeuge aus Festigkeitsgründen nicht bestanden, so sind für den Zylinderkopf Leichtmetalllegierungen einsetzbar, die das Gewicht in vorteilhafter Weise reduzieren und über wesentlich bessere Eigenschaften hinsichtlich des Wärmetransportes verfügen.

Zur Steuerung und Betätigung der Gaswechselventile und der Einspritzventile ist ein sich über mehrere Zylinder, bevorzugt über alle Zylinder eines Reihenmotors oder über alle Zylinder einer Zylinderbank eines V-Motors erstreckendes Steuer- und Betätigungsmodul vorgesehen, das wenigstens eine Nockenwelle und die Betätigungseinrichtungen für die Gaswechselventile enthält und die Betätigungseinrichtungen für die Einspritzventile umschließt. Das Steuer- und Betätigungsmodul ist an den Schmiermittelkreislauf angeschlossen und weist einen Gehäusedeckel auf, über den die Betätigungseinrichtungen für die Gaswechselventile und die Einspritzventile zugänglich sind. Auch hinsichtlich des mittels lösbarer Verbindungen am Zylinderkopf bzw. den Zylinderköpfen befestigten Steuer- und Betätigungsmoduls ergeben sich durch die vom Zylinderkopf losgelöste Konstruktion neue Möglichkeiten bei der Materialwahl. Eine vollständige oder zumindest teilweise Ausführung in Kunststoff erlaubt eine vorteilhafte Gewichtsreduzierung und vereinfacht die Fertigung als Kunststoffspritzgussteil. In das Steuer- und Betätigungsmodul kann in vorteilhafter Weise ein allen Brennräumen bzw. allen Brennräumen einer Zylinderbank gemeinsames Ladeluftrohr integriert sein.

Beispiel der erfindungsgemäßen Anordnung sind nachfolgend unter Zuhilfenahme der Zeichnungen näher erläutert, es zeigen:

1 Ein Brennraum einer Brennkraftmaschine in Teildarstellung, geschnitten und schematisch dargestellt

2 der Brennraum aus 1 in Seitenansicht von außen

2 der Brennraum aus 1 in Draufsicht von außen

4 einen Schnitt durch den Brennraum entlang der Linie B-B

5 einen Schnitt durch die den Brennraum nach oben abschließende gekühlte Platte entlang der Linie C-C

6 eine erste Detaildarstellung der Verbindung zwischen gekühlter Platte und Buchse

7 eine zweite Detaildarstellung der Verbindung zwischen gekühlter Platte und Buchse

8 eine dritte Detaildarstellung der Verbindung zwischen gekühlter Platte und Buchse

9 eine Detaildarstellung einer Kühlmittelverbindung zwischen Kurbelgehäuse und gekühlter Platte

10 eine zweite Detaildarstellung einer Kühlmittelverbindung zwischen Kurbelgehäuse und gekühlter Platte

11 eine Detaildarstellung der Kühlmittelverbindung zwischen Zylinderkopf und gekühlter Platte

12 eine Schnittdarstellung durch den Brennraum entlang der Linie D-D

13 eine Schnittdarstellung durch den Brennraum entlang der Linie E-E

14 eine Schnittdarstellung durch den Brennraum mit einer beschichteten ge kühlten Platte entlang der Linie F-F

15 eine Schnittdarstellung durch eine gekühlte Platte mit Schichtaufbau entlang der Linie G-G

16 eine Schnittdarstellung durch eine gekühlte Platte mit Schichtaufbau entlang der Linie H-H

17 die Darstellung des Brennraums aus 1 mit aufgesetztem Steuerungs- und Betätigungsmodul

Die Konzeption einer Brennkraftmaschine für hohe Zünddrücke geht von der Grundüberlegung aus, dass die Abdichtung der Brennräume funktional vom Zylinderkopf getrennt werden muß, um günstigere geometrische Verhältnisse für die Abdichtung zu schaffen und hinsichtlich der einsetzbaren Materialien neue Möglichkeiten zu eröffnen. Es wird deshalb ein eigenständiges Bauteil vorgeschlagen, das zwischen Brennraum und Zylinderkopf liegt und dessen ausschließliche Funktion darin besteht, den Brennraum zum Zylinderkopf hin abzuschließen und abzudichten. Ein Brennraum der dem vorstehend aufgezeigten Konzept folgt, ist in 1 schematisch in einem Schnittbild dargestellt, der Verlauf der Schnittebene ist aus der 3 entnehmbar und dort mit A-A bezeichnet.

1 zeigt einen Brennraum 1 einer selbstzündenden Brennkraftmaschine, der aus einer Zylinderlaufbuchse 2, einem Kolben 3 und einer gekühlten Platte 4 besteht. Die Zylinderlaufbuchse 2 ist in bekannter Weise im Kurbelgehäuse 5 angeordnet und im Bereich des Brennraumes 1 von Kühlmittel führende Räumen 6 zur Kühlung der Brennraumwände umgeben. Der Kolben 3 wirkt über ein Pleuel 7 auf eine Kurbelwelle 8, die im Kurbelgehäuse 5 gelagert ist (nicht dargestellt). Nach oben hin wird der Brennraum 1 durch die gekühlte Platte 4 abgeschlossen, die im wesentlichen den äußeren Durchmesser eines am Zylinderkopfseitigen Ende der Zylinderlaufbuchse 2 angeordneten Buchsenbundes 9 aufweist. An der gekühlten Platte 4 ist zum Brennraum 1 hin ein zylinderförmiger Ansatz 10 angeordnet, dessen Durchmesser im wesentlichen dem Innendurchmesser der Zylinderlaufbuchse 2 entspricht, so dass die gekühlte Platte 4 den zylinderkopfseitigen Rand der Zylinderlaufbuchse 2 winkelförmig umgreift.

Im Inneren der gekühlten Platte 4 sind Kühlkanäle 11 angeordnet, in denen ein Kühlmedium zirkuliert. Die gekühlte Platte 4 ist mit der Zylinderlaufbuchse 2 formschlüssig und gasdicht verbunden. Weiterhin sind in der gekühlten Platte 4 Ventilsitze (in 1 nicht sichtbar) angeordnet, die mit den Ventiltellern 12 der Gaswechselventile 13 zusammenwirken. Die Kraftstoffzuführung erfolgt über eine Öffnung 20, die die gekühlte Platte 4 in ihrem Zentrum von der dem Brennraum 1 abgewandten Seite in Richtung Brennraum 1 durchsetzt und in der ein Einspritzventil (in 1 nicht dargestellt) angeordnet ist. Die Anordnung des Einspritzventils in der Öffnung 20 ist so getroffen, dass das Einspritzventil, ggf. unter Zwischenlage eines Dichtmittels, den Brennraum gasdicht abschließt und mit seiner Einspritzdüsenöffnung (nicht dargestellt) in diesen hinein ragt. Gehalten ist die Einspritzdüse im Zylinderkopf 14, der sich auf der dem Brennraum 1 abgewandten Seite an die gekühlte Platte 4 anschließt und diese mit seiner der gekühlten Platte 4 zugewandten Seite vollständig überdeckt bzw. über diese hinausragt. Befestigt ist der Zylinderkopf 14 in konventioneller Weise mittels Schrauben (nicht dargestellt), die den Zylinderkopf 14 in Richtung Kurbelgehäuse 5 durchragen und am Kurbelgehäuse 5 festlegen. Im Zylinderkopf 14 sind in bekannter Weise die Gaskanäle (nicht dargestellt) für Ansaugluft bzw. die Verbrennungsgase, die Ventilführungen (nicht dargestellt) für die Ventilschäfte 15 der Gaswechselventile 13 und ein Kühlmittelraum 16 zur Kühlung des Zylinderkopfes 14 bzw. seiner Einbauteile angeordnet. Durch senkrecht zur gekühlten Platte 4 verlaufende erste Schottwände 17 und parallel zur gekühlten Platte 4 verlaufende zweite Schottwände 18 wird der Raum im Zylinderkopf 14 in eine zellulare Struktur unterteilt, die einerseits durch Verbindungsbohrungen 21 eine gezielte Kühlmittelführung ermöglicht und andererseits, eine hohe Steifigkeit aufweist, die einer Durchbiegung der gekühlten Platte 4 in der Zündphase entgegen wirkt.

Eine Außenansicht der Zylinderlaufbuchse 2 mit aufgesetzter gekühlter Platte 4 zeigen 2 in Seitenansicht und 3 in Draufsicht. Die gekühlte Platte 4 ist mit dem Buchsenbund 9 mittels Schrauben 19 verschraubt, und entspricht in ihrem Durchmesser dem Außendurchmesser des Buchsenbundes 9. Durch die Verbindung des Buchsenbundes 9 mit der gekühlten Platte 4 an der Brennraumgrenze wird die mögliche Durchbiegung der gekühlten Platte 4 auf ein Minimum reduziert. In der gekühlten Platte 4 sind, wie bereits zur 1 ausgeführt, die Gaswechselventile 13 und die Öffnung 20 für das Einspritzventil angeordnet.

Einen Schnitt durch den Brennraum entlang der Linie B-B (3) zeigt 4. Auch in dieser Darstellung ist die gekühlte Platte 4 mit dem Buchsenbund 9 der Zylinderlaufbuchse 2 mittels der Schrauben 19 verschraubt. In der gekühlten Platte 4 verlaufen, von Umfang der gekühlten Platte 4 ausgehend, Kühlkanäle 11 auf das Zentrum der gekühlten Platte 4 zu. Der Verlauf der Kühlkanäle 11 in der gekühlten Platte 4 ist beispielhaft in 5 dargestellt. Die 5 zeigt dabei einen Schnitt entlang der Linie C-C in 2. Von gegenüber liegenden Seiten des Umfanges der gekühlten Platte 4 ausgehend verlaufen jeweils zwei Bohrungspaare bildende Bohrungen 11.1, 11.2, 11.5, 11.6 aufeinander zu, wobei jedes der Bohrungspaare ein „X" bildet, sich also die Bohrungen eines Bohrungspaares schneiden. Die Anordnung der Bohrungspaare relativ zur Anordnung der Öffnungen für die Gaswechselventile 13, deren Mittelpunkte im wesentlichen die Eckpunkte eines Quadrates bilden, ist dabei so getroffen, dass der Schnittpunkt jeweils eines Bohrungspaares zwischen zwei benachbarten Öffnungen für die Gaswechselventile 13 liegt. Die Bohrungen 11.1, 11.2, 11.5, 11.6 eines jeden Bohrungspaares verlaufen von den jeweiligen Schnittpunkten aus gesehen in Richtung auf das Zentrum der gekühlten Platte 4 zu wieder auseinander und schneiden die Bohrungen des jeweils gegenüber liegenden Bohrungspaares auf einer Linie durch den Mittelpunkt der gekühlten Platte 4. Auf diese beiden Schnittpunkte der Bohrungspaare trifft jeweils eine einzelne Bohrung 11.3, 11.4 die ebenfalls vom Umfang der gekühlten Platte ausgeht und um 90° versetzt zu den X-förmigen Bohrungspaaren zwischen zwei benachbarten Öffnungen der Gaswechselventile 13 verläuft. Das sich so ausbildende Netz verbundener Bohrungen 11.1-11.6 bildet die Kühlkanäle 11 die, wie weiter unten näher ausgeführt wird, auf unterschiedliche Weise mit dem Kühlsystem der Brennkraftmaschine verbunden sein können. Durch den gewählten Verlauf der Bohrungen 11.1-11.6 wird eine effiziente Kühlung der kritischen Bereiche zwischen den Öffnungen für die Gaswechselventile 13 und zwischen diesen und der Öffnung 20 für das Einspritzventil erreicht, so dass sogenannte Stegrisse sicher vermieden werden können.

Die vorstehend in Verbindung mit den 1 bis 5 beschriebene Verschraubung der Zylinderlaufbuchse 2 mit der gekühlten Platte 4 ist in einer Detaildarstellung in 6 geschnitten gezeigt. Die gekühlte Platte 4 befindet sich, den Brennraum 1 in Richtung auf den Zylinderkopf 14 (in 6 nicht dargestellt) abschließend, im Bereich des Buchsenbundes 9 auf der Zylinderlaufbuchse 2 und umgreift die Innenkante des Buchsenbundes 9 winkelförmig. Durch eine Durchgangsbohrung 22 wirkt die Schraube 19 mit einem entsprechenden Gewinde 23 im Buchsenbund 9 zusammen und legt die gekühlte Platte 4 am Buchsenbund 9 fest. Zur Abdichtung des Brennraumes 1 kann der Durchmesser des zylinderförmigen Ansatzes 10 der gekühlten Platte 4 in Verbindung mit dem Innendurchmesser der Zylinderlaufbuchse 2 so ausgeführt sein, dass sich eine Presspassung ergibt. Zusätzlich oder alternativ ist es selbstverständlich möglich, zwischen Buchsenbund 9 und gekühlter Platte 4 ein Dichtmittel vorzusehen. Hinsichtlich der verwendeten Schrauben 19 sind unterschiedliche Gestaltungen des Schraubenkopfes denkbar, bei den gezeigten Schrauben 19 mit überstehenden Schraubenkopf 19.1 sind entsprechende Ausnehmungen im Zylinderkopf 14 (1) vorzusehen. Werden hingegen Senkkopfschrauben verwendet, kann die der gekühlten Platte 4 benachbarte Seite des Zylinderkopfes 14 im Bereich der Schrauben 19 glatt ausgeführt sein. Bevorzugt sind die Schrauben 19 zueinander gleich beabstandet entlang des Umfanges der gekühlten Platte 4 bzw. des Buchsenbundes 9 angeordnet.

Das vorstehend in Verbindung mit den 1 bis 6 beschriebene Beispiel eines Brennraumes für hohe Zünddrücke bedient sich einer Zylinderlaufbuchse 2 als Teil des Brennraumes, dies ist selbstverständlich nicht zwingend. Die in den Figuren gezeigten und vorstehend beschriebene Anordnung kann selbstverständlich auch ohne Zylinderlaufbuchse ausgeführt sein, der Brennraum ist dann durch die Zylinderbohrung, die gekühlte Platte 4 und den Kolben 3 gebildet. Bei den 1 bis 6 hat man sich im Falle einer buchsenlosen Ausführung die mit 2 bezeichnete Zylinderlaufbuchse und den mit 9 bezeichneten Buchsenbund als integralen Bestandteil des Kurbelgehäuses 5 vorzustellen, darüber hinaus ändert sich hinsichtlich Anordnung und Funktion nichts.

Weitere Möglichkeiten, die gekühlte Platte 4 mit dem Buchsenbund 9 der Zylinderlaufbuchse 2 zu verbinden zeigen die Detaildarstellungen in den 7 und 8. Gemäß der Schnittzeichnung in 7 erfolgt die Verbindung der gekühlten Platte 4 mit dem Buchsenbund 9 durch verschweißen. Dazu ist eine durchgehende oder über den Umfang mehrfach unterbrochene, z.B. punktförmige Schweißnaht 24 entlang des äußeren Umfanges des Stoßes zwischen gekühlter Platte 4 und Buchsenbund 9 vorgesehen. Eine punktförmige Schweißverbindung minimiert dabei den Wärmeeintrag und damit die Gefahr des Verzugs der Zylinderlaufbuchse 2. Der zylinderförmige Ansatz 10 der gekühlten Platte 4 kann auch in diesem Beispiel zusammen mit dem Innendurchmesser des Buchsenbundes 9 eine Presspassung ausbilden, die im Falle einer unterbrochenen Schweißnaht die Abdichtung übernimmt.

Die Schnittdarstellung gemäß 8 zeigt eine weitere Möglichkeit die gekühlte Platte 4 mit dem Buchsenbund 9 zu verschrauben, dazu ist am zylinderförmigen Ansatz 10 der gekühlten Platte 4 ein Außengewinde 25 vorgesehen, das mit einem Innengewinde 26 am zylinderkopfseitigen Rand des Buchsenbundes 9 zusammenwirkt. Durch das Verschrauben der gekühlten Platte 4 mit dem Buchsenbund 9 über die Schraubverbindung 25, 26 erfolgt die Verbindung zwischen diesen Bauteilen an dem hinsichtlich der Minimierung möglicher Durchbiegungen der gekühlten Platte 4 günstigsten geometrischen Ort, nämlich unmittelbar an der Brennraumgrenze. Hinsichtlich der Abdichtung des Brennraumes 1 wirkt die Schraubverbindung 25, 26 darüber hinaus wie eine Labyrinthdichtung.

Selbstverständlich sind die vorstehend in Verbindung mit den 6 bis 8 beschriebenen Verbindungen zwischen der gekühlten Platte 4 und der Zylinderlaufbuchse nur Beispiele, es lassen sich mit dem Fachmann verfügbaren Mitteln viele unterschiedliche Verbindungen zwischen diesen beiden Bauteilen, insbesondere aber auch zwischen der gekühlten Platte und dem Kurbelgehäuse, bei einer Ausführung des Brennraumes ohne Zylinderlaufbuchse, realisieren.

In Verbindung mit der Beschreibung der die Kühlkanäle 11 bildenden Bohrungen 11.1-11.6 wurde bereits angesprochen, dass diese mit dem Kühlsystem der Brennkraftmaschine verbunden sind. Diese Verbindung kann auf unterschiedliche Weise erfolgen. Einige Möglichkeiten, die Kühlkanäle 11 in der gekühlten Platte 4 mit Kühlmittel zu speisen bzw. Kühlmittel aus diesen abzuführen, zeigen beispielhaft die Detaildarstellungen in den 9-11.

Die Schnittzeichnung in 9 zeigt dabei vereinfacht die bereits bekannte Anordnung aus gekühlter Platte 4 und Zylinderlaufbuchse 2. Die Zylinderlaufbuchse 2 befindet sich in der Zylinderbohrung im Kurbelgehäuse 5, wobei zur Kühlung der Wände des Brennraumes 1 Kühlmittel führende Räume 6 zwischen Kurbelgehäuse 5 und Zylinderlaufbuchse 2 ausgebildet sind. Die gekühlte Platte 4 weist eine einen Kühlkanal 11 ausbildende Bohrung auf, die von der Umfangsseite 27 der gekühlten Platte 4 radial nach innen läuft. Zur Umfangsseite 27 hin ist der Kühlkanal 11 mittels einer eingepressten Kugel 28 verschlossen. Die Anbindung des Kühlkanales 11 an das Kühlsystem der Brennkraftmaschine ist durch eine Zuführungsbohrung 29 bewerkstelligt, die den Buchsenbund 9 der Zylinderlaufbuchse 2 durchsetzt und mit einer Anschlussbohrung 30 im auf dem Buchsenbund 9 aufliegenden Randbereich der gekühlten Platte 4 fluchtet, wobei die Anschlussbohrung 30 in den Kühlkanal 11 mündet. Selbstverständlich können gleichartige Zuführungsbohrungen und damit fluchtende Anschlussbohrungen an mehreren Stellen der gekühlten Platte 4 vorgesehen sein und mit entsprechenden Kühlkanälen zusammenwirken, um eine effiziente Kühlung zu gewährleisten.

Eine weitere Möglichkeit, aus dem Kurbelgehäuse 5 Kühlmittel der gekühlten Platte 4 zuzuführen zeigt, schematisch in einer Schnittzeichnung, 10. Auch hier ist die bereits beschriebene Anordnung aus Zylinderlaufbuchse 2 und gekühlter Platte 4 dargestellt. Umschlossen ist diese Anordnung einerseits vom Kurbelgehäuse 5 und andererseits dem auf dem Kurbelgehäuse 5 angeordneten Zylinderkopf 14. Im Kurbelgehäuse 5 läuft ein Verbindungskanal 31 von einem im Kurbelgehäuse 5 angeordneten Kühlmitteldurchgang 32 zu der Trennlinie zwischen Zylinderkopf 14 und Kurbelgehäuse 5 und geht dort in einen im Zylinderkopf 14 angeordneten Anschlusskanal 33 über, der seinerseits über eine Anschlussöffnung 34 in den analog zum Beispiel nach 9 in der gekühlten Platte 4 angeordneten Kühlkanal 11 mündet. Zur Abdichtung des Übergangs zwischen Kurbelgehäuse 5 und Zylinderkopf 14 einerseits und Zylinderkopf 14 und gekühlter Platte 4 andererseits sind Dichtmittel 35 vorgesehen. Auch bei diesem Beispiel können an mehreren Stellen gleichartige Kühlmittelzuführungen zur gekühlten Platte 4 vorgesehen sein.

Die Schnittzeichnung in 11 zeigt schließlich vereinfacht dargestellt eine Kühlmittelversorgung der gekühlten Platte 4 vom Zylinderkopf 14 der Brennkraftmaschine aus. Die gezeigte Anordnung umfasst auch in diesem Fall eine Zylinderlaufbuchse 2 mit der die gekühlte Platte 4 auf eine der vorstehend beschriebenen Arten verbunden ist. Die Kombination aus Zylinderlaufbuchse 2 und gekühlter Platte 4 lagert in einer Zylinderbohrung im Kurbelgehäuse 5, derart, dass die zylinderkopfseitige Flachseite der gekühlten Platte 4, mit der dem Zylinderkopf 14 benachbarten Seite des Kurbelgehäuses 5 fluchtet. Zur Kühlmittelversorgung ist von dem im Zylinderkopf 14 angeordneten Kühlmittelraum 16 über eine auf die gekühlte Platte 4 zu laufende Verbindungsöffnung 36, die mit einem Kühlmittelanschluss 37 in der gekühlten Platte 4 fluchtet, eine Verbindung zwischen dem Kühlmittelraum 16 und dem Kühlkanal 11 in der gekühlten Platte 4 geschaffen. Der von der Umfangseite der gekühlten Platte 4 ausgehende, in Form einer Bohrung ausgebildeten Kühlkanal 11 ist, ebenso wie bei dem vorstehend beschriebenen Beispielen, durch eine eingepresste Kugel 28 nahe der Umfangseite verschlossen. Zur Abdichtung der Verbindungsstelle zwischen Zylinderkopf 14 und gekühlter Platte 4 ist rund um den Kühlmittelanschluss 37 ein Dichtmittel 35 angeordnet. Wie bereits zu den Beispielen nach den 9 und 10 ausgeführt, können auch im Beispiel nach 11 mehrere gleichartige Verbindungen zwischen dem Kühlmittelraum 16 im Zylinderkopf 14 und Kühlkanälen 11 in der gekühlten Platte 4 vorgesehen sein.

Für die vorstehend beschriebenen Beispiele nach den 9-11 gilt gemeinsam, dass selbstverständlich die Kühlmittelabführung von der gekühlten Platte 4 zum Kurbelgehäuse 5 oder zum Zylinderkopf 14 gleichartig zu den in den Beispielen beschriebenen Kühlmittelzuführungen ausgebildet sein können, so dass auf eine gesonderte Darstellung der Kühlmittelabführungen verzichtet werden kann. Weiterhin ist es natürlich denkbar, verschiedene Arten der Kühlmittelzuführung bzw. der Kühlmittelabführung bei der Kühlmittelversorgung einer gekühlten Platte 4 in Kombination zur Anwendung zu bringen, auch hier erübrigt sich eine gesonderte Darstellung. Die vorstehend beschriebenen Prinzipien der Kühlmittelversorgung der gekühlten Platte 4 eignen sich natürlich gleichermaßen für Brennkraftmaschinen mit Zylinderlaufbuchsen und buchsenlosen Brennkraftmaschinen. Im Falle von buchsenlosen Brennkraftmaschinen hat man sich in den Beispielen nach den 9-11 die dargestellte Zylinderlaufbuchse 2 lediglich als integralen Bestandteil des Kurbelgehäuses 5 vorzustellen, so dass auch hinsichtlich dieses Aspektes auf eine gesonderte Darstellung und Beschreibung verzichtet werden kann.

Eine Anbindung der gekühlten Platte 4 gemäß der Ausbildung nach 5 an das Kühlsystem in einer Anordnung nach 1 ist nachfolgend anhand der Schnittzeichnungen in den 12 und 13 näher erläutert. Dabei zeigt 12 einen Schnitt entlang der Linie D-D (5) und 13 einen Schnitt entlang der Linie E-E (5). Nachdem die Anordnung vorstehend in Verbindung mit den 1 und 5 bereits eingehend beschrieben ist, wird nachfolgend nur auf die Verbindung zwischen dem Kühlmittelraum 16 im Zylinderkopf 14 und den die Kühlkanäle 11 bildenden Bohrungen 11.1-11.6 eingegangen.

12 zeigt, ausgehend von einer ersten Kühlmittelkammer 16.1, die Teil des Kühlmittelraumes 16 im Zylinderkopf 14 ist, eine Zulaufhohrung 38, die die erste Kühlmittelkammer 16.1 mit der Bohrung 11.1 in der gekühlten Platte 4 verbindet. Die Bohrung 11.1 die zur Schmalseite der gekühlten Platte 4 hin durch eine Kugel 28 verschlossen ist, schneidet am Punkt X die Bohrung 11.2 deren weiterer Verlauf bis zum Punkt Y im Schnittbild dargestellt ist. Am Punkt Y schneidet die Bohrung 11.2 die Bohrung 11.6 deren Verlauf in der rechten Hälfte der 12 gezeigt ist. Die Bohrung 11.6 schneidet am Punkt Z die Bohrung 11.5 und ist an der Schmalseite der gekühlten Platte 4 mit einer in die Bohrung 11.6 eingepressten Kugel 28 verschlossen. Über eine Ablaufbohrung 39 ist eine Verbindung zwischen der Bohrung 11.6 und einer zweiten Kühlmittelkammer 16.2 im Zylinderkopf 14 hergestellt, die stromab zur ersten Kühlmittelkammer 16.1 liegt und ebenfalls Teil des Kühlmittelraumes 16 ist.

Einen von der Darstellung in 12 in Teilen abweichenden in 5 mit E-E bezeichneten Schnittverlauf zeigt 13. Nachdem der Schnittverlauf mit dem Schnittverlauf in der 12 bis zum Schnittpunkt Y identisch ist, wird hierzu auf die vorstehende Beschreibung zu 12 verwiesen. An Punkt Y schneidet die Bohrung 11.2 sowohl die Bohrung 11.6 als auch die Bohrung 11.3, deren Verlauf in der rechten Hälfte der 13 dargestellt ist. Die Bohrung 11.3 ist ebenfalls nahe der Umfangseite mit einer Kugel 28 verschlossen. Zur Abführung des Kühlmittels aus der gekühlten Platte 4 ist eine weitere Ablaufbohrung 40 vorgesehen, die die Bohrung 11.3 mit einer dritten Kühlmittelkammer 16.3 verbindet die ebenfalls Teil des Kühlmittelraumes 16 ist und stromab zur Kühlmittelkammer 16.1 liegt.

Analog zu der in Verbindung mit den 12 und 13 beschriebenen Anbindung des Kühlmittelraumes 16 an die Kühlkanäle 11 in der gekühlten Platte 4 hat man sich auch die Anbindung der übrigen in 5 dargestellten Bohrungen 11.2, 11.4, 11.5 vorzustellen, so dass hierzu auf eine explizite Darstellung verzichtet werden kann, es ist lediglich anzumerken, dass die Bohrungen 11.1 und 11.2 Kühlmittelzuführungen und die Bohrungen 11.3, 11.4, 11.5, 11.6 Kühlmittelabführungen sind und demgemäß die Speisung der Kühlmittelzuführungen von Teilen des Kühlmittelraumes 16 im Zylinderkopf 14 aus erfolgt, die stromauf zu den Teilen des Kühlmittelraumes 16 liegen in die die Kühlmittelabführungen zurückgeführt sind.

Hinsichtlich der Auslegung der in Verbindung mit den 1, 5, 12, 13 beschriebenen Anordnung ist anzumerken, dass die Verbindungen 21 zwischen den einzelnen Teilen des Kühlmittelraumes 16 (1) und die Verbindungen zwischen dem Kühlmittelraum 16 und den Kühlkanälen 11 so ausgelegt sind, dass sich eine entsprechend der Wärmebelastung von gekühlter Platte 4 und Zylinderkopf 14 gestaffelte Wärmeabfuhr ergibt, dabei ist die Wärmebelastung und damit auch die Wärmeabfuhr an der Brennraumgrenze am größten und nimmt mit zunehmendem Abstand zum Brennraum ab.

Zu dem vorstehend in Verbindung mit den 1, 5, 12, 13 beschriebenen Beispiel ist weiter anzumerken, dass die Verbindung der gekühlten Platte 4 mit dem Buchsenbund bzw. mit dem Kurbelgehäuse bei buchsenlosen Brennkraftmaschinen bedingt, dass die Ventilsitze der Gaswechselventile 13 im montierten Zustand dem Kurbelgehäuse 5 zugeordnet sind, die Ventilführungen dagegen im Zylinderkopf 14 liegen. Aus dieser Konstellation ergeben sich erhöhte Anforderungen an die Montagegenauigkeit des Zylinderkopfes 14 zum Kurbelgehäuse 5. Insbesondere sich addierende Fertigungstoleranzen führen dazu, dass zumindest bei großvolumigen Motoren für Nutzfahrzeuge keine durchgehenden Zylinderköpfe eingesetzt werden sollten, sondern solche die einen oder zwei Zylinder umfassen.

Für die exakte Montage des Zylinderkopfes relativ zu der gekühlten Platte 4 oder den gekühlten Platten 4 wenn der Zylinderkopf mehrere Zylinder umfasst, sind Passmaßnahmen, wie z.B. Passstifte erforderlich.

Hinsichtlich der Materialwahl ergeben sich durch die Trennung der Brennraumabdichtung vom Zylinderkopf völlig neue Möglichkeiten. Die gekühlte Platte 4 kann aus einer hochfesten Metalllegierung z.B. hochfesten geschmiedeten Stahl bestehen der für konventionelle Zylinderköpfe aus konstruktiven, fertigungstechnischen und finanziellen Gründen nicht eingesetzt werden könnte. Der Zylinderkopf dagegen ist wegen der gegenüber herkömmlichen Zylinderköpfen geringen Beanspruchung aus einfacheren Materialien, wie z.B. Aluminium herstellbar, die neben Kostenvorteilen auch Gewichtsvorteile mit sich bringen.

Bei geeigneter Materialwahl lassen sich die Ventilsitze für die Gaswechselventile 13 direkt in die gekühlte Platte einarbeiten, so dass auf das Einpressen von Ventilsitzringen verzichtet werden kann. Dadurch entfallen bei einem heute gebräuchlichen Vierventilmotor nicht nur pro Zylinder vier Bauteile, bei einem 6-Zylinder-Motor also 24 Bauteile, sondern es werden insbesondere die durch das Einpressen der Ventilsitzringe in konventionellen Zylinderköpfen verursachten Spannungen vermieden. Diese Spannungen, die durch den Wärmeeintrag beim Verbrennungsvorgang noch verstärkt werden, tragen in erheblichen Maß zum Entstehen der bereits erwähnten Stegrisse bei.

Die Trennung der Brennraumabdichtung vom Zylinderkopf ermöglicht bzw. vereinfacht darüber hinaus verschleißmindernde und/oder wirkungsgraderhöhende Maßnahmen am Brennraumdach.

Eine solche Maßnahme ist in 14 dargestellt, die in einer Teildarstellung einen Schnitt entlang der Linie F-F in 3 zeigt. Auch in dieser Darstellung ist von einer mit dem Buchsenbund 9 einer Zylinderlaufbuchse 2 verschraubten gekühlten Platte 4 ausgegangen, wobei Zylinderlaufbuchse 2 gekühlte Platte 4 und Kolben 3 (1) den Brennraum 1 bilden. Um einerseits den durch die Verbrennungsvorgänge bedingten Wärmeeintrag in die gekühlte Platte 4 zu vermindern und andererseits den durch die Schließvorgänge der Ventilteller 12 an den Ventilsitzen 41 verursachten Verschleiß zu minimieren, ist vorgesehen, die dem Brennraum 1 abdeckende Seite der gekühlten Platte 4 mit einer keramischen Beschichtung 42 zu versehen. Derartige keramische Beschichtungen sind auf unterschiedlichste Weise aufbringbar, die dazu angewandten Methoden sind dem Fachmann bekannt. Selbstverständlich sind auch andere als keramische Beschichtungen denkbar.

Um unterschiedliche Materialeigenschaften in unterschiedlichen Ebenen der gekühlten Platte zu erzielen besteht, wie in 15 in einer Teildarstellung entlang der Linie G-G (16) geschnitten gezeigt, die Möglichkeit, die gekühlte Platte 4 aus Schichten aufzubauen. Es ist dabei ein erstes Paket aus zwei Schichten 45 vorgesehen, wobei die zwei Schichten 45 aus Metallplatten bestehen, die einen biegesteifen Verbund bilden und sowohl Zuströmöffnungen 43 als auch Abströmöffnungen 44 enthalten, über die die Kühlflüssigkeit vom Zylinderkopf 14 analog dem Beispiel nach 11 zuströmen bzw. zu diesem abströmen kann. An die zwei Schichten 45 schließt sich in Richtung Brennraum 1 eine dritte Schicht 46 an, die Ausnehmungen 47 z.B. in Form von Freistanzungen umfasst. Die Ausnehmungen 47 korrespondieren mit den Zuführungsöffnungen 43 und den Abführungsöffnungen 44 und bilden die Kühlkanäle der gekühlten Platte 4. In der Materialwahl der dritten Schicht 46 kann auf eine gute Bearbeitbarkeit abgestellt sein, weil diese Schicht 46 wegen der Ausnehmungen 47 ohnehin nicht viel zur Biegesteifigkeit des Verbundes beitragen kann. Die in Richtung auf den Brennraum 1 vierte Schicht 48 besteht ebenso wie die ersten beiden Schichten 45 aus einen Material hoher Biegesteifigkeit, während die in Richtung Brennraum fünfte Schicht 49 eine große Härte und eine geringe Wärmeleitfähigkeit aufweist. In diese fünfte Schicht 49 sind die Ventilsitze der Gaswechselventile (in 15 nicht dargestellt) eingearbeitet. Die Verbindung der parallelen Platten 45, 46, 48, 49 untereinander erfolgt im gezeigten Beispiel durch Schweißverbindungen 50 entlang des Umfanges der parallelen Platten 45, 46, 48, 49, es sind aber auch andere Möglichkeiten denkbar, die parallelen Platten zu einem die gekühlte Platte bildenden Paket zusammenzufassen. Die Ausbildung der gekühlten Platte als einen Stapel paralleler Platten hat neben der Möglichkeit bestimmte Materialeigenschaften in bestimmten Ebenen der gekühlten Platte zu realisieren, den weiteren Vorteil, dass sich die Kühlmittelkanäle besonders leicht, auch in komplizierten Formen und über mehrere Ebenen der gekühlten Platte verteilt, z.B. durch einfaches Freistanzen erzeugen lassen. Ein Beispiel mit aus der Schicht 46 freigestanzten Kühlmittelkanälen 11 zeigt 16 in einem Schnitt durch die besagte Schicht 46 entlang der Linie H-H (15). Wie in der Darstellung erkennbar, sind die Kühlmittelkanäle 11 zu Ventilöffnungen 51 gering beabstandet im Bereich der Ventilstege 51.1 angeordnet und optimieren die Kühlwirkung in diesem Bereich. Neben dem vorstehend beschriebenen Freistanzen der Kühlmittelkanäle können diese auch reliefartig vertieft in die parallelen Platten eingearbeitet sein.

Wie bereits vorstehend insbesondere in Verbindung mit 1 beschriebenen, sind entweder ein durchgehender allen Brennräumen gemeinsamer oder mehrere jeweils wenigstens einem Brennraum zugeordnete Zylinderköpfe vorgesehen, wobei der Zylinderkopf bzw. die Zylinderköpfe lediglich die Gaswechselkanäle, die Kühlkanäle, die Führungen für die Gaswechselventile und die Aufnahme für die Einspritzventile beinhaltet. Die bei konventionellen Motorkonstruktionen üblicherweise im Zylinderkopf bzw. in den Zylinderköpfen enthaltenen Steuerungs- und Betätigungsmechanismen für die Gaswechselventile sowie für die Einspritzventile sind, wie in 17 in einer Schnittzeichnung entlang der Linie A-A (2) dargestellt, in einem Steuer- und Betätigungsmodul angeordnet, das allen Brennräumen gemeinsam ist. Nachdem sich die Darstellung in 17 von der Darstellung in 1 nur durch das Steuerungs- und Betätigungsmodul 52 unterscheidet, das sich auf der dem Brennraum 1 abgewandten Seite des Zylinderkopfes 14 an diesen anschließt, werden nachfolgend nur diese abweichenden Teile der Darstellung beschrieben. Bezüglich der übrigen auch in den Bezugszeichen mit der 1 identischen Darstellungsteile wird auf die Beschreibung zu 1 verwiesen.

Das Steuerungs- und Betätigungsmodul 52 verfügt über einen allen Brennräumen und damit auch allen Zylinderköpfen 14 gemeinsamen Träger 53 an dem in einem wannenförmig ausgebildeten Teilbereich 54 eine Nockenwelle 55 drehbar gelagert ist. Der Antrieb der Nockenwelle 55 erfolgt in konventioneller Weise durch eine über die Kurbelwelle 8 angetriebene, in der Darstellung nicht gezeigte Getriebeanordnung, es kann sich dabei um ein Zahnradgetriebe, eine Kette oder einen Zahnriemen handeln. Die Nockenwelle 55 wirkt in bekannter Weise über ihre Nocken 56 auf Rollenkipphebe 157, die drehbar auf einer im gemeinsamen Träger 53 gelagerten Achse 58 angeordnet sind, derart, dass die Nocken 56 der Nockenwelle 55 die nockenseitigen Enden 57.1 der Kipphebel 57 beaufschlagen. In Folge dieser Beaufschlagung betätigen die ventilseitigen Enden 57.2 der Rollenkipphebe 157 über Ventilbrücken 59 die Gaswechselventile 13 und öffnen bzw. schließen dadurch über die Ventilteller 12 die Gaswechselkanäle (nicht dargestellt).

Die Versorgung der Brennräume mit Kraftstoff erfolgt über im Zylinderkopf 14 angeordnete Einspritzventile 60, die über Rohrverbindungen (nicht dargestellt) mit einer Einspritzanlage (nicht dargestellt) verbunden sind. Bei der Einspritzanlage kann es sich z.B. um ein Common Rail Einspritzsystem handeln. Die Betätigung der Einspritzventile erfolgt über eine elektronische Steuerung (nicht dargestellt) auf elektrischem Wege, wie dies bei Common Rail Einspritzanlagen üblich ist. Zur Versorgung der Schmierstellen ist eine zentrale Schmiermittelbohrung 61 vorgesehen, die vom Schmiermittelkreislauf der Brennkraftmaschine (nicht dargestellt) mit Schmiermittel versorgt wird und ihrerseits mit den Schmierstellen im Steuerungs- und Betätigungsmodul 52 über Schmiermittelkanäle (nicht dargestellt) direkt oder indirekt verbunden ist. Überschüssiges Schmiermittel wird im gemeinsamen Träger 53 gesammelt und über eine Rückführleitung (nicht dargestellt) in die Ölwanne der Brennkraftmaschine (nicht darstellt) rückgeführt.

Zur Kapselung der am gemeinsamen Träger 53 angeordneten Bauteile ist ein Deckel 62 vorgesehen, der mit dem gemeinsamen Träger 53 verschraubt ist und das Innere des Steuerungs- und Betätigungsmoduls 52 gegenüber der umgebenden Atmosphäre abschließt. Die Befestigung des Deckels 62 am gemeinsamen Träger 53 erfolgt mittels Schrauben (nicht dargestellt), der gemeinsame Träger 53 seinerseits ist mittels Schrauben (nicht dargestellt) am Zylinderkopf 14 bzw. an den Zylinderköpfen 14 festgelegt.

Selbstverständlich ist die vorstehende Beschreibung der Mechanismen zur Betätigung der Gaswechselventile und der Einspritzventile nur beispielhaft zu verstehen. Bei der Betätigungsanordnung für die Gaswechselventile kann es sich natürlich auch um eine elektronisch gesteuerte Anordnung handeln, die die Gaswechselventile individuell über elektrisch oder hydraulisch beaufschlagte Aktuatoren betätigt. Desgleichen ist das beschriebene Common Rail Einspritzsystem nur eine mögliche Ausführung, es kann sich natürlich auch um ein Pumpe-Düse-System oder um ein Pumpe-Leitung-Düse-System handeln.

Auch in Verbindung mit dem vorstehend beschriebenen Steuerungs- und Betätigungsmodul eröffnen sich durch die Trennung vom Zylinderkopf neue Möglichkeiten in der Materialwahl. Es ist beispielsweise denkbar, den gemeinsamen Träger 53 aus Leichtmetall oder einen faserverstärkten Kunststoff als Spritzgussteil herzustellen, was neben Gewichtsvorteilen auch eine erhebliche Fertigungsvereinfachung mit sich bringt.

Abhängig von dem für den gemeinsamen Träger verwendeten Werkstoff bzw. das verwendete Fertigungsverfahren lassen sich darüber hinaus auch weitere Funktionsteile einstückig mit diesem ausführen. So ist es denkbar, das Ladeluftrohr und/oder Kühlmittelrohre zur Anbindung des Zylinderkopfes bzw. der Zylinderköpfe an das Kühlsystem der Brennkraftmaschine in den gemeinsamen Träger zu integrieren.

Das vorstehend in Verbindung mit der 17 beschriebene Steuerungs- und Betätigungsmodul 52 muss natürlich nicht unbedingt vom Zylinderkopf 14 getrennt sein, die Funktionalität des Steuerungs- und Betätigungsmoduls kann natürlich auch unter bestimmten Voraussetzungen in den Zylinderkopf integriert sein. So wäre bei einer unten liegenden Nockenwelle, also stößelbetätigten Kipphebeln und Einzelzylinderköpfen die Integration der Betätigungsanordnung für die Gaswechselventile in die Zylinderköpfe von Vorteil, wie dies bei derartigen Konstruktionen üblich ist.

Abweichend von den vorstehend beschriebenen Beispiel sind zahlreiche Abwandlungen und Ausgestaltungen denkbar, die vom grundlegenden Lösungsansatz ausgehend mit dem Fachmann zugänglichem Wissen ableitbar sind. Den vorstehend beschriebenen Anordnungen kommt deshalb nur Beispielcharakter zu.


Anspruch[de]
Selbstzündende Brennkraftmaschinen mit Brennräumen für hohe Zünddrücke, wobei die Brennräume (1) jeweils aus einer im Kurbelgehäuse (5) der Brennkraftmaschine angeordneten Zylinderbohrung oder einer in der Zylinderbohrung angeordneten Zylinderlaufbuchse (2), einem in der Zylinderbohrung oder der Zylinderlaufbuchse (2) geführten Kolben (3) und einem gegenüber dem Kolben (3) angeordneten Zylinderkopf (14) besteht und wobei

– im Kurbelgehäuse (6) Kühlmittel führende Räume (6) angeordnet sind, derart, dass Teile der Wandung der Zylinderbohrung oder der Zylinderlaufbuchse (2) auf der dem Brennraum (1) abgewandeten Seite von dem Kühlmittel umströmt sind,

– der Zylinderkopf (14) einem oder mehreren Brennräumen (1) zugeordnet ist und ebenfalls von dem Kühlmittel durchströmte Kühlmittelräume (16) aufweist,

– im Zylinderkopf (14) für jeden Brennraum (1) Gaswechselkanäle, wenigstens ein Einspritzventil sowie Führungen für wenigstens ein Einlassventil und wenigstens ein Auslassventil angeordnet sind.

dadurch gekennzeichnet, dass

zwischen dem Brennraum (1) und dem Zylinderkopf (14) eine die Deckfläche des Brennraumes (1) bildende separate, mit dem Kurbelgehäuse (5) und/oder der Zylinderlaufbuchse (2) formschlüssig und gasdicht verbundene gekühlte Platte (4) angeordnet ist, in der die Ventilsitze wenigstens eines Einlassventils und wenigstens eines Auslassventils angeordnet sind und die von dem wenigstens einen Einspritzventil durchragt wird.
Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindung der gekühlten Platte (4) mit dem Kurbelgehäuse (5) und/oder der Zylinderlaufbuchse (2) möglichst dicht am Brennraumrand erfolgt. Brennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass die Kühlung der gekühlten Platte (4) mittels des Kühlmittels erfolgt. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) von Kühlkanälen (11) durchsetzt ist. Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, dass die Kühlkanäle (11) Bohrungen (11.1-11.6) sind, die die gekühlte Platte (4) jeweils ausgehend von der Umfangsseite der gekühlten Platte (4) durchsetzen. Brennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass zumindest ein Teil der Bohrungen (11.1-11.6) so angeordnet ist, dass sie einander schneiden, derart dass sich ein verbundenes System an Bohrungen ergibt. Brennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass zumindest ein Teil der von der Umfangsseite der gekühlten Platte (4) ausgehenden Bohrungen (11.1-11.6) zur Umfangsseite hin wieder verschlossen sind. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Umfangsseite und/oder im überstehenden Randbereich der die Deckfläche des Brennraums (1) bildenden Flachseite der gekühlten Platte (4) und/oder der der Deckfläche gegenüberliegenden Flachseite der gekühlten Platte (4) Zuströmöffnungen und/oder Abströmöffnungen für das Kühlmittel vorgesehen sind und der Zustrom des Kühlmittels direkt in die gekühlte Platte (4) und/oder über den Zylinderkopf (14) in die gekühlte Platte (4) und/oder über das Kurbelgehäuse (5) in die gekühlte Platte (4) erfolgt und dass das Abströmen des Kühlmittels direkt aus der gekühlten Platte (4) und/oder aus der gekühlten Platte (4) in den Zylinderkopf (14) und/oder aus der gekühlten Platte (4) in das Kurbelgehäuse (5) erfolgt. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zylinderlaufbuchse (2) an ihrem dem Zylinderkopf (14) zugewandten Ende einen umlaufenden Buchsenbund (9) aufweist, der sich am oberen Rand der Zylinderbohrung oder an einem umlaufenden Balkon in der Zylinderbohrung abstützt. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuströmöffnungen und Abströmöffnungen Bohrungen in der gekühlten Platte (4) sind, die mit entsprechenden Öffnungen im Zylinderkopf (14) oder im Buchsenbund (9) der Zylinderlaufbuchse (2) oder im Kurbelgehäuse (5) oder in einem separaten Kühlmittelverteilerrohr korrespondieren und die Kühlkanäle (11) in der gekühlten Platte (4) mit den Kühlmittelräumen (16) im Zylinderkopf oder mit kühlmittel führenden Räumen (6) im Kurbelgehäuse (5) oder mit dem Kühlmittelverteilerrohr verbinden. Brennkraftmaschine nach Anspruch 10, dadurch gekennzeichnet, dass im jeweiligen Übertrittsbereich des Kühlmittels zwischen gekühlter Platte (4) und Zylinderkopf (14) oder gekühlter Platte (4) und Buchsenbund (9) oder gekühlter Platte (4) und Kurbelgehäuse (5) oder gekühlter Platte (4) und Kühlmittelverteilerrohr Dichtmittel (35) vorgesehen sind. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) aus einer hochfesten Metalllegierung gefertigt ist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der gekühlten Platte (4) Ventilsitzringe angeordnet sind. Brennkraftmaschine nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Ventilsitze in die gekühlte Platte (4) eingearbeitet sind. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) an ihrer dem Brennraum (1) zugewandten Seite einen zylinderförmigen Ansatz (10) aufweist, dessen Außendurchmesser dem Innendurchmesser des Brennraums (1) im wesentlichen entspricht, wobei der Zylinderförmige Ansatz (10) im montierten Zustand der gekühlten Platte (4) im Innern der Zylinderbohrung oder der Zylinderlaufbuchse (2) liegt, derart, dass die gekühlte Platte (4) den oberen inneren Rand der Zylinderbohrung oder der Zylinderlaufbuchse (2) winkelförmig umgreift. Brennkraftmaschine nach Anspruch 15, dadurch gekennzeichnet, dass der Außendurchmesser des zylinderförmigen Ansatzes (10) relativ zum Innendurchmesser der Zylinderbohrung oder der Zylinderlaufbuchse (2) so gewählt ist, dass sich eine Presspassung ergibt. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem den Brennraumrand überlappenden Teil der gekühlten Platte (4) und dem diesen gegenüber liegenden Teil des Kurbelgehäuses (5) und/oder der Zylinderlaufbuchse (2) eine Brennraumdichtung angeordnet ist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) mit dem Kurbelgehäuse (5) oder der Zylinderlaufbuchse (2) mittels Schrauben (19) verschraubt ist. Brennkraftmaschine nach Anspruch 18, dadurch gekennzeichnet, dass die Schrauben (19) konzentrisch zur Brennraumachse angeordnet und in Umfangsrichtung gesehen im wesentliche zueinander gleich beabstandet sind. Brennkraftmaschine nach Anspruch 15, dadurch gekennzeichnet, dass die gekühlte Platte (4) mit der Zylinderlaufbuchse (2) mittels eines Innengewindes (26) am oberen Rand des Buchsenbundes (9) und eines Außengewindes (25) am Umfang des zylinderförmigen Ansatzes (10) verschraubt ist. Brennkraftmaschine nach einem der Ansprüche 1-16, dadurch gekennzeichnet, dass die gekühlte Platte (4) mit der Zylinderlaufbuchse (2) verschweißt ist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Verwendung einer Zylinderlaufbuchse (2) mit Buchsenbund (9) die gekühlte Platte (4) einen Außendurchmesser aufweist, der im wesentlichen dem Außendurchmesser des Buchsenbundes (9) der Zylinderlaufbuchse (2) entspricht. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) an ihrer den Brennraum (1) begrenzenden Fläche eine Beschichtung (42) mit geringer Wärmeleitfähigkeit und/oder hoher Verschleißfestigkeit aufweist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) aus einer Mehrzahl zum Brennraumdach parallel verlaufender Schichten (45, 46, 48, 49) aufgebaut ist, die ihrerseits plattenförmig ausgebildet sind, derart, dass sich ein Plattenpaket ergibt, wobei wenigstens eine im Inneren des Plattenpaketes liegende parallele Platte Ausnehmungen (47) aufweist, die über Kühlmittelzuführungen und Kühlmittelabfiürungen im Kühlmittelkreislauf der Brennkraftmaschine liegen und wobei die parallelen Schichten (45, 46, 48, 49) des Plattenpaketes untereinander verbunden sind. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine der parallelen Schichten (45, 46, 48, 49) von den übrigen parallelen Schichten (45, 46, 48, 49) abweichende Materialeigenschaften aufweist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Zylinderköpfe (14) vorgesehen sind wobei jedem Zylinderkopf (14) wenigstens ein Brennraum (1) zugeordnet ist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Zylinderkopf (14) vorgesehen ist, der allen Brennräumen (1) gemeinsam zugeordnet ist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) vom Zylinderkopf (14) zumindest in ihrem Zentrum druckbeaufschlagt ist. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Innern des Zylinderkopfes (14) die Kühlmittelräume (16) unterteilende Schottwände (17, 18) zumindest senkrecht zur Flachseite der gekühlten Platte (4) angeordnet sind, derart, dass sich eine in Richtung auf den Brennraum (1) biegesteife Struktur ergibt. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zylinderkopf (14) bzw. die Zylinderköpfe (14) aus einer Leichtmetalllegierung gefertigt sind. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich an der den Brennräumen (1) abgewandten Seite des Zylinderkopfes (14) bzw. der Zylinderköpfe (14) wenigstens ein Steuerungs- und Betätigungsmodul (52) anschließt, wobei das Steuerungs- und Betätigungsmodul (52) einer Mehrzahl von Brennräumen (1) zugeordnet ist und an einem gemeinsamen Träger (53) zumindest die Betätigungseinrichtungen für die Einlass- und Auslassventile und die Einspritzdüsen für diese Brennräume (1) beinhaltet. Brennkraftmaschine nach Anspruch 31, dadurch gekennzeichnet, dass der gemeinsame Träger 53 wenigstens eine Nockenwelle (55) enthält. Brennkraftmaschine nach einem der Ansprüche 31 oder 32, dadurch gekennzeichnet, dass an dem gemeinsamen Träger (53) ein Deckel (62) angeordnet ist, über den die Betätigungs- und oder Steuerelemente zugänglich sind. Brennkraftmaschine nach einem der Ansprüche 31-33, dadurch gekennzeichnet, dass an dem gemeinsamen Träger (53) ein Schmierölzulauf und ein Schmierölrücklauf angeordnet sind. Brennkraftmaschine nach einem der Ansprüche 31-34, dadurch gekennzeichnet, dass das Steuer- und Betätigungsmodul (52) an dem Zylinderkopf (14) bzw. den Zylinderköpfen (14) mittels lösbarer Verbindungen befestigt ist. Brennkraftmaschine nach einem der Ansprüche 31-35, dadurch gekennzeichnet, dass das Steuer- und Betätigungsmodul (52) zumindest teilweise aus Kunststoff gefertigt ist. Brennkraftmaschine nach einem der Ansprüche 31-36, dadurch gekennzeichnet, dass am Steuer- und Betätigungsmodul (52) ein allen Brennräumen (1) gemeinsames Ladeluftrohr angeordnet ist.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com