PatentDe  


Dokumentenidentifikation EP1209772 28.06.2007
EP-Veröffentlichungsnummer 0001209772
Titel Kontakt zum Unterbinden einer Bogenentladung, Verfahren zum Herstellen desselbigen und Verbinder zum Unterbinden einer Bogenentladung
Anmelder AutoNetworks Technologies, Ltd., Nagoya, Aichi, JP;
Sumitomo Wiring Systems, Ltd., Yokkaichi, Mie, JP;
Sumitomo Electric Industries, Ltd., Osaka, JP
Erfinder Hirai, Hiroki, Nagoya-shi, Aichi, JP;
Ota, Koji, Nagoya-shi, Aichi, JP;
Tsuji, Yoshitsugu, Nagoya-shi, Aichi, JP
Vertreter WINTER, BRANDL, FÜRNISS, HÜBNER, RÖSS, KAISER, POLTE, Partnerschaft, 85354 Freising
DE-Aktenzeichen 60128436
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 27.11.2001
EP-Aktenzeichen 011281425
EP-Offenlegungsdatum 29.05.2002
EP date of grant 16.05.2007
Veröffentlichungstag im Patentblatt 28.06.2007
IPC-Hauptklasse H01R 13/648(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H01R 13/53(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

This invention relates to a connector for use in a wire harness in an automotive vehicle, a terminal for use in such a connector and a method for manufacturing such a terminal.

It is a general practice to detach connectors used in an automotive vehicle or the like therefrom every several months or every several years for maintenance and checkup thereof. It is highly likely that arc discharge may occur at a detachment of terminals of the connectors when the terminal of one of the connectors is about to be withdrawn from the corresponding terminal of the opposite one of the connectors. Particularly, it is conceivable that a considerably large amount of arc is discharged in view of the recent development of technology in which a higher source voltage is supplied for a battery of an automotive vehicle. Thus, it is highly likely that the terminals may be damaged due to occurrence of such large amount of arc discharge.

Generally, a male terminal has a bar-like or a plate-like shape with a lead end thereof tapered in order to facilitate insertion into a female terminal. Every time the male terminal is disengaged from and engaged into the female terminal, arc discharge occurs. The repeated engagement and disengagement causes to melt the tapered lead end of the male terminal due to repeated arc discharges. The melted part of the male terminal is cooled to solidify, accompanied with shifting of the melted part slightly toward a base end thereof. As a result, the tapered lead end of the male terminal disappears accompanied by increase of a diameter thereof. In other words, the terminal is likely to be deformed due to melting by repeated arc discharges , which may result in contact failure with the female terminal or, in a worse case, difficulty or inability of insertion into the female terminal.

US-A-4,747,783, from which the present invention starts from, shows a resistive pin for a printed circuit card connector, said resistive pin being comprised at its distal end from a conductive core member, followed by an insulating layer and a resistive layer. Both insulating layer and resistive layer are applied to the distal end of the conductive pin in a laminated way, i.e. one above the other. They extend from the distal tip end of the conductive pin throughout a certain length thereof, both terminating between distal end and proximal end of the conductive pin in a common planes being perpendicular to the longitudinal axis of the conductive pin. By means of such a construction sparks and associated high frequency noise upon insertion or removal of the pin should be supressed. As current surges during insertion or removal should be supressed, this necessitates the resistive layer there having no electrical contact with the conductive pin. This "floating" arrangement of the resistive layer, however, hampers an electrical contact between male and female contact in case an electrical contact is made right from the tip end of the male connector pin.

It is therefore an object of the invention to provide a terminal, a connector therewith and a method for manufacturing the terminal, which are free from the above drawbacks.

Solution of this object is achieved by a terminal according to claim 1, a terminal pair according to claim 10, a connector according to claim 13 and a method for manufacturing the terminal according to claim 14, wherein the respective subclaims contain advantageous modifications.

According to the invention, the electrically conductive slayer is electrically connected with the main body of the terminal, which is made of electrically conductive material. Such electric connection is made by, for example, extension of the electrically conductive layer beyond the insulating layer such that the extending portion is formed directly on the main body. An other measure to have an electrical contact between electrically conductive layer and terminal or pin is that a resiliently deformable spring contact portion engages the lead portion and is in contact with the conductive layer on the lead portion.

With such an arrangement an electric contact between the male and female terminals is ensured by simultaneously suppressing arches between male and female terminals upon contact interruption.

These and other objects, features and advantages of the present invention will become more apparent upon a reading of the following detailed description and accompanying drawings, in which:

  • FIGS. 1A and 1B are side views schematically showing a male terminal and a female terminal in accordance with a first embodiment of the present invention;
  • FIG. 2 is a partially enlarged sectional view of the male terminal shown in FIGS. 1A and 1B;
  • FIG. 3 is a partially enlarged sectional view showing a state that the male terminal and the female terminal in FIGS. 1A and 1B are engaged;
  • FIG. 4 is a partially enlarged sectional view showing a state that the male terminal and the female terminal in FIGS. 1A and 1B are about to be disengaged;
  • FIG. 5 is an exploded perspective view of a male terminal in accordance with a second embodiment of the invention in which a terminal main body and a terminal lead portion are independently manufactured;
  • FIG. 6 is a sectional plan view partially showing an assembled state of the male terminal in FIG. 5;
  • FIG. 7 is an exploded perspective view of a male terminal having a cylindrical electric contact part in accordance with a third embodiment of the invention;
  • FIG. 8 is a perspective view showing a state that the male terminal in FIG. 7 is about to be engaged with a female terminal;
  • FIG. 9 is a sectional plan view partially showing a state that a terminal main body of an altered male terminal is engaged with a terminal lead portion thereof in the third embodiment;
  • FIG. 10 is an exploded perspective view of a male terminal and a female terminal in accordance with a fourth embodiment of the invention in which the male terminal is comprised of a terminal main body and a terminal lead portion;
  • FIG. 11 is a perspective view showing a state that the terminal main body and the terminal lead portion of the male terminal shown in FIG. 10 are engaged;
  • FIG. 12 is a sectional side view of the male terminal in FIG. 11;
  • FIG. 13 is a sectional plan view of the male terminal in FIG. 11;
  • FIG. 14 is a perspective view of the female terminal in FIG. 10 viewed from forward direction;
  • FIG. 15 is a sectional side view of the female terminal in FIG. 14;
  • FIG. 16 is a sectional plan view of the female terminal in FIG. 14;
  • FIG. 17 is a sectional side view showing a state that the pair of male terminal and female terminal in FIG. 10 is in a completely engaged state;
  • FIG. 18 is a sectional plan view showing a state that the terminal pair is in a completely engaged state;
  • FIG. 19 is a sectional side view showing a state that the terminal pair is about to be disengaged; and
  • FIG. 20 is a sectional plan view showing a state immediately before the terminal pair is brought to a completely disengaged state.

A terminal and a connector embodying the invention are described in detail with reference to the accompanying drawings. Described is first a terminal embodying the invention.

A terminal in accordance with a first embodiment of the invention is described with reference to FIGS. 1A to 4.

As shown in FIG. 1A, the male terminal 1 includes a box-like part 1b constituting a main body of the terminal, and a male electric contact part (male tab) 1a which projects axially forwardly from the box-like part 1b. The entirety of the terminal main body is made of a material having a high conductivity such as copper metal. The male terminal 1 and a housing 3 made of resin which is adapted to accommodate the male terminal 1 therein constitutes a male connector.

A female terminal 2 includes a box-like part 2b. A contact spring 2a and a second contact piece 2a' are provided in the box-like part 2b in such a manner that the second contact piece 2a' opposes the contact spring 2a to sandwich the male tab 1b therebetween in an engagement of the male terminal 1 and the female terminal 2. Similar to the male terminal 1, the female terminal 2 is housed in a housing 4 made of resin. The female terminal 2 and the housing 4 constitutes a female connector.

As shown in FIGS. 1B and 3, engaging the terminals 1 and 2 enables to render the male tab 1a into contact with a female electric contact part 2A including the contact spring 2a and the second contact piece 2a', thereby allowing the terminals 1 and 2 to be electrically connectable.

When the male terminal 1 thus engaged with the female terminal 2 is about to be withdrawn therefrom, arc is likely to be discharged at and/or around a contact portion between the male tab 1a and the female contact part 2A. For instance, as shown in FIG. 4, when the male terminal 1 is about to be withdrawn from the female terminal 2 axially rearwardly, the male tab 1a is first detached from the contact spring 2a, and then is detached from the second contact piece 2a'. At a final stage of disengagement, namely, at a stage of detaching the male tab 1a from the second contact piece 2a' in FIG. 4, arc is discharged at and/or around a contact portion between the male terminal 1 and the female terminal 2, which may likely to damage the terminals 1 and 2.

According to the invention, the male terminal 1 is so constructed that an insulating layer 1c (see FIGS. 2 and 4) is formed at an outer region of the male terminal 1 including a distal end part 1e (hereinafter, also referred to as "final-contact part 1e") which corresponds to a part of the male terminal 1 in contact with the female terminal 2 at a final stage of disengagement. Further, the male terminal 1 is so constructed that a conductive layer 1d covers the entirety of the insulating layer 1c. The conductive layer 1d is electrically connected to a primary part (conductive part) of the male terminal 1. Covering the final-contact part 1e with the insulating layer 1c and the conductive layer 1d as mentioned above enables to keep the male terminal 1 electrically connectable with the female terminal 2 by way of the conductive layer 1d until the male terminal 1 is completely disengaged from the female terminal 2. Also, even in the case where arc is discharged at the disengagement of the male terminal 1 from the female terminal 2, the insulating layer 1c formed on the inner side of the conductive layer 1d effectively lowers the amount of discharged arc to thereby securely suppress deformation of the male terminal 1 and the female terminal 2.

The present invention is effective for the following reasons in the aspect of suppressing arc discharge and deformation of terminals.

[First reason]

In the conventional arrangement in which the male terminal is not provided with an insulating layer and a conductive layer, once arc discharge initiates at the time of disengagement of the terminals, metallic vapor is successively generated from the tab part of the terminal. As a result, arc discharge is promoted. On the other hand, in the inventive arrangement, since the male terminal 1 (male tab 1a in FIGS. 1A to 4)is coated with the insulating layer, generation of metallic vapor from the primary part of the tab is blocked by the insulating layer. Consequently, even if metallic vapor is generated, a supply source of such metallic vapor is restricted to the conductive layer which has a smaller thickness compared to the primary part of the tab. Accordingly, emission of metallic vapor is eventually blocked by the insulating layer, thereby reducing the amount of discharged arc.

[Second reason]

In the conventional arrangement where the male terminal is not provided with the insulating layer and the conductive layer, once arc is discharged, the tab part of the male terminal is likely to be deformed by discharged arc. On the other hand, in the inventive arrangement where the male terminal is coated with the insulating layer and the conductive layer, even if arc is discharged, damage is restricted to the outer surface of the conductive layer. Since it is less likely that the primary part of the tab may be deformed because the primary part of the tab is located on the inner side of the insulating layer, a desirable engagement of the terminals is maintained.

The insulating layer 1c may preferably be formed at least at the final-contact part 1e. A site for forming the insulating layer 1c on the final-contact part 1e of the male terminal 1 is not limited to the one as illustrated. However, it is preferable not to form an insulating layer on a certain part of the male terminal 1 which is rendered into contact with the female terminal 2 during an engagement. For example, in FIG. 3, the male tab 1a is in contact with the contact spring 2a and the second contact piece 2a' in a securely engaged state of the male terminal 1 and the female terminal 2. Parts of the male terminal 1a which are rendered into contact with the contact spring 2a and the second contact piece 2a' are respectively referred to as "contact part 1f" and "contact part 1f'". In this state, the insulating layer 1c is not formed on the contact parts 1f and 1f' (entire region of the contact part 1f and a base region of the contact part 1f' in FIG. 3). Thus, non-formation of the insulating layer 1c on the certain part of the male terminal 1 which is rendered into contact with the female terminal 2 in an engagement enables to render the male terminal 1 in direct contact with the female terminal 2 or in indirect contact therewith via the conductive layer 1d. Thereby, there is no likelihood of lowering conductivity of the connectors in an engagement of the terminals.

The insulating layer 1c is generally formed on a certain region including the final-contact part 1e of the male terminal 1. It is preferable to form the insulating layer 1c on the following region:

  1. (a) covering an axially most lead end position of the final-contact part 1e + 1mm;
  2. (b) more preferably, covering an axially most lead end position of the final-contact part 1e + 3mm;
  3. (c) furthermore preferably, covering an axially most lead end position of the final-contact part 1e + 5mm.

Forming the insulating layer 1c on the above region enables to securely prevent arc from being discharged around the terminal beyond the insulating layer 1c.

Generally, in the case of the male terminal 1, a distal end 1g or its vicinity (in FIG. 2, the part le) constitutes the final-contact part. In view of this, in the case where the insulating layer is formed on the male tab 1a, it is feasible to form the insulating layer 1c having an axial length of 1mm or longer, preferably 3mm or longer from the distal end 1g.

The material of forming the insulating layer 1c is not limited, as far as the material is effective to suppress arc discharge as low as possible. The insulating layer 1c includes layers processed with metallic deposition such as Al2O3 (alumite)-layer, SiO2-layer, Si3N4-layer, TiO2-layer, metallic insulating layers such as layers applied with black color coating (CuO-layer), layers processed with chromate, and resinous insulating layers made of insulating resins.

The metallic layer is not necessarily formed by vapor deposition, and may be formable by metal plating, adhering a thin metallic film on the terminal, or its equivalent.

The resinous insulating layer may be formed by applying a coating agent (paint coating, enamel coating, varnished coating, etc.) in which an insulating resin is dissolved in a solvent onto the terminal according to various coating techniques (including spray coating and dipping). A baking process may be added when need arises to do so. Alternatively, the insulating resin may be applied in powdery state, or an insulating film may be adhered on the terminal.

Generally, the thickness of the insulating layer 1c ranges from 0.5 to 500µm, preferably from 5 to 50 µm.

Generally, the insulating layer 1c has an electric resistance of 1 × 1016 &OHgr; or greater. Providing the insulating layer with an electric resistance larger than that of a metal (silver metal) constituting a tab part of the terminal enables to reduce arc discharge. In other words, the insulating layer may be electrically conductive to a certain extent as far as arc discharge is suppressed. In view of this, the electric resistance of the insulating layer may be, for example, 1&OHgr; or larger, preferably 20&OHgr; or larger.

A site for forming the conductive layer 1d is not specifically limited, as far as the conductive layer 1d covers the insulating layer 1c. Generally, it is preferable to form the conductive layer 1d over a region covering at least 0.1mm in axial length (preferably, at least 1mm in axial length) from an outermost (most upstream) end position in the terminal insertion direction in order to securely render the conductive layer 1d electrically connectable with the terminal 1

The entirety of the male terminal 1 (or male tab 1a) may be covered with the conductive layer 1d. In the case where the entirety of the male terminal 1 (or male tab 1a) is not covered with the conductive layer 1d, the conductive layer 1d may preferably be formed over a region covering 3mm in axial length at longest from the most upstream end position of the insulating layer 1c in the terminal insertion direction.

The conductive layer may be a layer plated with a conductive metal such as Sn, Ni, Al, Ag, and Au, or a conductive polymer layer such as a polyaniline layer which is doped with an alkali metal. In the case where a metallic layer is formed by plating a metal, there rises a case that the resultant metallic layer may have a smaller strength at a portion where electroless plating has been performed. In view of such drawback, in the case where electroless plating is performed, it may be preferable to plate the outermost layer by the other plating method (electrolytic plating, hot dipping or the like).

The conductive layer may preferably be a thin film (for example, 500 µm or less in thickness, preferably 100 µm or less, more preferably 35 µm or less). The smaller the thickness of the conductive layer is, the more the amount of metallic vapor resultantly emitted from arc discharge can be lowered. Thus, the amount of arc discharge itself can be reduced. The conductive layer generally has a thickness of 0.01 µm or greater, preferably, 0.1 µm or greater.

The combination of the insulating layer 1c and the conductive layer 1d is not limited to the aforementioned example. Not only the arrangement in which the conductive layer 1d directly covers the insulating layer 1c but also the arrangement in which the conductive layer 1d indirectly covers the insulating layer 1c is applicable. In the case of indirect covering, an intermediate layer is provided between the insulating layer 1c and the conductive layer 1d to indirectly cover the insulating layer 1c with the conductive layer 1d. Hereinafter, exemplified combinations are described.

[Example of combination of direct covering]

insulating layer 1c:
a resinous insulating layer (such as enamel layer), and
conductive layer 1d:
a conductive resinous layer

[Example of combination of indirect covering provided with an intermediate layer]

insulating layer 1c:
a layer processed with black color coating, a layer processed by chromate, or a resinous insulating layer (such as enamel layer),
conductive layer 1d:
a layer plated with a conductive metal (such as a layer formed by electrolytic plating), and
intermediate layer:
a layer formed by electroless plating (electroless plating with Ni, Sn, Al, etc.).

An insulating layer and a conductive layer may be formed on the female terminal, or alternatively, formed on both of the male terminal and the female terminal. For instance, in the case where a conductive layer is formed on the female terminal in the drawings of FIGS. 1A to 4, the second contact piece 2a' may correspond to a final-contact part 2e of the female terminal 2 which corresponds to the final-contact part 1e of the male terminal 1. In such a case, an insulating layer and a conductive layer may be formed on a region including the final-contact part 2e. There is a case that the contact spring 2a may correspond to the final-contact part 1e. In such a case, the contact spring 2a may be formed with an insulating layer and a conductive layer.

According to the invention, since the final-contact part is covered with the insulating layer, arc discharge, even if occurs, immediately disappears. Thus, damage due to arc discharge is restricted within a region where the conductive layer is formed, and a terminal is prevented from damage. Even if part of the conductive layer is damaged or broken, which may result in exposure of the insulating layer, the terminal is usable for a certain number of times (e.g., 3 to 200 times) until the conductive layer is almost completely peeled off because the remaining part of the conductive layer makes the terminal electrically conductive while blocking arc discharge thereat. When the thus constructed terminal is used, for example, in a connector of a wire harness in an automotive vehicle, it is less likely that the conductive layer is completely peeled off at a detachment of the terminals for maintenance and repair of an automotive vehicle even if a high voltage is applied to the wire harness.

The male terminal 1 may be integrally formed of a single material. In such a case, however, a masking process is required to partially provide the insulating layer 1c on a restricted region such as a lead end part of the male tab 1a, as shown in FIG. 1. Further, it is preferable to etch the surface of the insulating layer 1c to form a desirable conductive layer (plated layer) 1d on the insulating layer 1c. However, in the case where the insulating layer 1c is provided on the integrally formed one-piece male terminal 1, it is extremely difficult to etch the surface of the insulating layer 1c without corroding the main part of the male terminal 1.

In view of the above, it is preferable to construct a male terminal by two parts, as shown in FIG. 5, in such a manner that a terminal main body and a terminal lead portion which are independently provided are assembled together.

Now, a second embodiment of the invention is described with reference to FIGS. 5 to 7.

In FIG. 5, the male terminal 101 is constructed by the terminal main body 112 and the terminal lead portion 111. The terminal main body 112 is made of a single metallic plate similar to a known terminal except that an electric contact part 112b is formed at a frontal end thereof to be engaged with the terminal lead portion 111. The electric contact part 112b has a flat rectangular opening in cross section, and is formed with engaging holes 112d at respective opposite side portions thereof.

The terminal lead portion 111 includes a tab portion 111a which corresponds to the male tab 1a of the terminal 1 in the first embodiment. An engaging portion 111b projects rearwardly from an intermediate portion of a rear wall of the tab portion 111a. Engaging arms 111c extend rearwardly from side ends of the rear wall of the tab portion 111a in parallel with opposite side walls of the engaging portion 111b. A projection 111d is formed at an outer side of a rear end of the engaging arm 111c (111c). The engaging portion 111b and the engaging arm 111c each has such a thickness (height) to be fitted in the opening of the electric contact part 112b. Slidingly inserting the engaging portion 111b into the opening of the electric contact part 112b in a state that the projections 111d are engaged in the corresponding engaging holes 112d of the electric contact part 112b, as shown in FIG. 6, enables to engage the terminal lead portion 111 in a front portion of the terminal main body 112, whereby the male terminal 101 is assembled as a whole.

As shown in FIG. 6, an electric conductive layer 101d is formed on a surface of a primary part of the terminal lead portion 111 composed of an insulating material. The terminal lead portion 111 is, for example, produced by integrally molding the primary part and by etching the surface thereof to form the conductive layer 101d. In this way, the terminal lead portion 111 is manufactured in a simplified manner without a masking process.

It is preferable to use the material having a high heat resistance for the primary part of the terminal lead portion 111, such as ceramic materials including alumina and aluminum nitride, thermosetting resins including epoxy resins and phenol resins, and thermoplastic resins including polyetheretherketone (PEEK) and polyphenylenesulfide (PPS). Metallic plating may include, similar to the first embodiment, electroless plating by copper and nickel, or combination of electroless plating with electrolytic plating or hot dipping with tin or the like. Alternatively, vapor deposition, coating with a conductive coating, adhesion of a metallic film or a conductive film, metallic coating, baking or its equivalent may be applicable in place of the metal plating.

The primary part of the terminal lead portion 111 is not necessary required to be a single molded member of an insulating material. As an altered form, an insulating layer may be provided by forming an oxide film on the surface of the primary part made of, e.g., aluminum or copper. Alternative means such as resin coating or enamel baking may be applicable. Molding the entirety of the primary part of the terminal lead portion 111 with an insulating material as mentioned above enables to provide the arc-discharge free terminal 101 without a possibility of breakage or damage of the insulating layer. This arrangement is advantageous in decreasing the number of processes to produce the terminal 101 because this arrangement eliminates necessity of forming an insulating layer independently.

The terminal according to the invention is not limited to the one having a tab-like configuration. A variety of modifications and alterations having different configurations and constructions are applicable. FIGS. 7 and 8 show a third embodiment of the invention in which a male terminal 201 and a female terminal 202 each has a cylindrical electric contact part.

As shown in FIG. 7, the male terminal 201 is divided into a terminal lead portion 211 and a terminal main body 212.

The terminal lead portion 211 is constructed by integrally forming a cylindrical electric contact part 211f and a coupling shaft 211e which extends rearwardly from the electric contact part 211f and has a smaller diameter than that of the electric contact part 211f. A lead end 211g of the electric contact part 211f is tapered in the shape of a truncated cone.

The terminal main body 212 includes a cylindrical electric contact part 212e and a coupling shaft 212f in the form of a barrel and a wire casing 212g in the form of a barrel. The electric contact part 212e has such an inner diameter as to fittingly insert the coupling shaft 211e, and an outer diameter substantially equal to the outer diameter of the electric contact part 211f. Fittingly inserting the coupling shaft 211e axially into a hollow portion of the electric contact part 212e toward the wire casing 212g enables to integrally joint the terminal main body 212 with the terminal lead portion 211. In this state when a wire (not shown) is securely held in the wire casing 212g, the wire is electrically connectable to the male terminal 201.

As shown in FIG. 8, the female terminal 202 includes a cylindrical electric contact part 202d into which the electric contact parts 211f, 212e are fittingly inserted. A conductor casing 202f and an insulator casing 202g are provided in this order of the female terminal 202 at a downstream end in the terminal insertion direction shown by the arrow in FIG. 8.

Composing a surface region of at least a primary part of the terminal lead portion 211 of an insulating material and forming a conductive layer over the insulating region enables to provide the female terminal 202 with arc discharge suppression function in the similar manner as the male terminal 201. Specifically, when the electric contact parts 211f, 212e are about to be detached from the electric contact part 202d, the lead end 211g of the electric contact part 211f formed with a thin conductive layer corresponds to a final-contact part which is rendered in contact with the electric contact part 202d at a final stage of disengagement. Since the lead end 211g has a truncated conical shape, arc discharge which is liable to be generated at a time of disengagement is effectively suppressed, thereby protecting the male terminal 201 from breakage or damage due to arc discharge.

The coupling construction of the terminal lead portion 211 and the terminal main body 212 is not limited to the one illustrated in FIG. 7. As an altered arrangement, as shown in FIG. 9, a recessed part 211h may be formed in an outer circumference of the coupling shaft 211e of the terminal lead portion 211, and an engaging piece 212h formed on the outer circumferential wall of the cylindrical electric contact part 212e of the terminal main body 212 may be pressingly inserted in the groove 211h.

A fourth embodiment of the invention is described with reference to FIGS. 10 through 20. The fourth embodiment is similar to the second embodiment and the third embodiment in that a male terminal 301 is divided into a terminal lead portion 313 and a terminal main body 314.

As shown in FIGS. 10 to 13, the male terminal 301 is constructed in such a manner that a primary part of a terminal lead portion 313 is integrally molded of an insulating material such as synthetic resin and a conductive layer 301d is formed on the insulating surface of the primary part by plating or its equivalent.

A head portion 313a having a generally rectangular parallelepiped shape and an engaging portion 313b extending rearwardly from the head portion 413a are integrally molded to form an entire configuration of the terminal lead portion 313. The sectional surface area of the engaging portion 313b is smaller than that of the head portion 313a. An axially extending recessed portion 313c is formed in a half rear portion on the top surface of the head portion 313a toward the engaging portion 313b.

The terminal main body 314 is constructed by bending a metallic plate having a high conductivity into a certain shape. A cylindrical (in FIG. 10, a generally prism-shaped) electric contact part 314b extends forwardly from a box-shaped main part 314a, and the engaging portion 313b of the terminal lead portion 313 is fixedly held in the electric contact part 314b. More specifically, a recessed portion 313d (see FIG. 12) is formed in a rear part on a bottom surface of the engaging portion 313b, and an upwardly and rearwardly projecting engaging piece 314d is formed at a rear part on a bottom wall of the electric contact part 314b. Fittingly inserting the engaging piece 314d in the recessed portion 313d enables to engage the terminal lead portion 314 with the terminal main body 313.

As shown in FIG. 12, a tongue-like piece 314t extends along the bottom wall of the electric contact part 314b to support the head portion 313a of the terminal lead portion 313 from below. A spring contact piece 314c extends forwardly from a top wall of the electric contact part 314b. A frontal end of the spring contact piece 314c is flexible (resiliently deformable), and a projection (contact) 314p projects downwardly from a lower surface of the lead end of the electric contact part 314b. When the engaging portion 313b of the terminal lead portion 313 is inserted in the electric contact part 314b, the spring contact piece 314c comes into sliding contact with the recessed portion 313c of the terminal lead portion 313, and the projection (contact) 314p formed at the lead end of the spring contact piece 314c is rendered into pressing contact with the conductive layer 301d formed on the lead part on the bottom surface of the recessed portion 313c in a state that the lead end of the spring contact piece 314c is upwardly deformed.

The terminal main body 314 is provided with a conductor casing 314e and an insulator casing 314f in this order rearwardly from the main part 314a. The conductor casing 314e has such a shape as to crimp a center conductor wire 331 (see FIG. 11) which is exposed from a lead end of an insulating wire 330. Thereby, the center conductor wire 331 and the terminal main body 314 are electrically connected. The insulator casing 314f has such a shape as to crimp an insulated part 332 of the insulating wire 330 at a rear position from the center conductor wire 331.

Next, the female terminal 302 which is engageable with the male terminal 301 is shown in FIGS. 14 through 16. The female terminal 302 is formed by bending a metallic plate having a high conductivity into a certain shape in the similar manner as the terminal main body 314 of the male terminal 301. The female terminal 302 is constructed in such a manner that a box-shaped electric contact part 320, a conductor casing 302e, and an insulator casing 302f which are formed rearwardly in this order from the electric contact part 320 are integrally formed. The conductor casing 302e and the insulator casing 302f have such a shape as to crimp a center conductor wire 341 and an insulating part 342 of an insulating wire 340, respectively.

The electric contact part 320 is formed with a projection 321 (see FIG. 15) axially extending on a lower surface of a top wall thereof. The projection 321 serves as an electric contact member against the male terminal 301. A substantially U-shaped spring contact piece 322 is formed on a lead end on the bottom wall of the electric contact part 320 with a free end directed rearwardly. A projection (contact) 322a is formed on the upper surface of a rear end portion (deformable free end portion) of the spring contact piece 322. The male terminal 302 is inserted in the electric contact part 320 in such a manner that the male terminal 301 is rendered into pressing contact with the projection 322a and the projection 321.

Further, the female terminal 302 has a feature that a fixed contact piece 324 and a spring contact piece 326 extend forwardly respectively from opposite side walls of the electric contact part 320 to constitute a contact portion for releasing generated arc.

The fixed contact piece 324 extends forwardly from the left side wall of the electric contact part 320, and is formed with an inward projection 324a at a front end thereof. A slit member 325 encloses an upper portion, a lower portion, and part of a front portion of the spring contact piece 326. A front end of the spring contact piece 326 is slightly tilted inwardly in such a manner that the front end is flexible sideways. The front half portion of the slit member 325 made of a metallic plate is bent rearwardly at about 180° and constitutes a protecting plate portion 327 to protect the spring contact piece 326 from an external force. The spring contact piece 326 and the fixed contact piece 324 securely nips the male terminal 301 inwardly in sideways directions.

Next, an operation of the male terminal and the female terminal as a pair in the fourth embodiment is described with reference to FIGS. 17 through 20.

As shown in FIGS. 17 and 18, the spring contact piece 322 of the electric contact part 320 of the female terminal 302 is deformable downwardly in a state that the male terminal 301 and the female terminal 302 are completely engaged. In this state, the projection 322a of the spring contact piece 322 and the projection 321 securely hold the electric contact part 314 of the male terminal 401 vertically. Specifically, the projection 322a and the projection 321 are rendered into pressing contact with the bottom wall and the top wall of the electric contact part 314, respectively due to a resilient force of the spring contact piece 322. Thus, the terminals 301 and 302 are electrically connectable via the pressing contact portion of the electric contact part 314.

The male terminal 301 is constructed in such a manner that the projection 314p of the spring contact piece 314c is rendered into pressing contact with the conductive layer 301d formed on the surface of the terminal lead portion 313 due to a resilient force of the spring contact piece 314c of the terminal main body 314 against the conductive layer 301d. Thus, the conductive layer 301d and the terminal main body 314 are electrically connectable by the pressing contact of the spring contact piece 314c against the conductive layer 301d. In the terminal main body 414 shown in FIGS. 17 and 18, the spring contact piece 414c which is designed to secure electric connection with the terminal lead portion 313, and the engaging portion (engaging piece 314d) which is designed to mechanically engage with the terminal lead portion 313 are formed independently. In this arrangement, since the contact spring piece 314c is free from a mechanical load, the electric connection of the male terminal and the female terminal can be secured while suppressing deformation of the contact spring piece 314c.

Next, when the terminals 301 and 302 are disengaged, first, contact of the projection 321 with the top wall of the electric contact part 314 is released (see FIG. 19), and then, contact of the tongue-like piece 314t of the electric contact part 314 with the projection 322a of the spring contact piece 322 is released. In this state, the fixed contact piece 324 and the spring contact piece 326 of the female terminal 302 are still rendered in contact state with the conductive layer 301d formed on the surface of the terminal lead portion 313a, and the electric connection of the conductive layer 301d with the terminal main body 314 is secured. Accordingly, there is no likelihood that arc is discharged at the time when the aforementioned members are released from the respective contact states.

There remains a likelihood that arc may be discharged when the fixed contact piece 324 or the contact spring piece 326 is detached from the conductive layer 301d (see FIG. 20). However, since the conductive layer 301d is an extremely thin film made of a plated metal or the like, arc discharge, even if occurs, is insignificant, and the terminals are effectively protected from damage due to arc discharge. Further, the terminal main body 314 is contacted with the conductive layer 301d at the projection 314p (contact site) which is formed at the frontal end of the spring contact piece 314c, and the spring contact piece 314c is connected to the terminal main body 314 via the rear end thereof. Since the distance between the contact site and a site (lead end) of the conductive layer 301d of the male terminal 301 which is detached from the female terminal 302 at a final stage of disengagement is short, an electric path of the conductive layer 301d along which current flows immediately before the male terminal 301 is disengaged from the female terminal 302 is short, thus effectively suppressing heated state of the terminals due to flow of current.

In the above arrangement, arc is discharged through a contact portion (in FIG. 14, the fixed contact piece 324 and the spring contact piece 326) which is provided independently of the electric contact portion (in FIG. 15, the projection 321 and the spring contact piece 322) of the female terminal 302. With this arrangement, the electric contact portion of the female terminal 302 is effectively protected from damage due to arc discharge, thereby securely providing electric connection with the male terminal 301.

Now, an example of producing the terminal shown in FIGS. 1 through 4 in accordance with the first embodiment of the invention is described. It should be appreciated that the invention is not limited to the below-mentioned example(s) and may be embodied in several forms without departing from the spirit of essential characteristics thereof since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds are therefore intended to embraced by the claims.

[Example 1]

A male terminal 1 and a female terminal 2 shown in FIGS. 1 to 4 were produced. An insulating layer (thickness = 10 µm, electric resistance = 1 × 1016 Q or larger) was made from polyimide. An intermediate layer (not shown) was formed by subjecting a nickel plate to electroless plating. A conductive layer (thickness = 10 µm) was formed by subjecting a tin plate to electrolytic plating.

The male terminal 1 and the female terminal 2 having the arrangement as shown in FIGS. 1 to 4 were connected, and then, the male terminal 1 was disconnected from the female terminal 2 in a state that a voltage of 42V was kept on being applied. Time duration of arc discharge occurrence was extremely short to such an extent that an accurate value was unmeasurable. It was verified, however, that the time duration of arc discharge occurrence was about 0.1 second. After the arc discharge, although the conductive layer of the lead end of the male terminal was slightly damaged, the external appearance of the male terminal remained unchanged.

[Comparative Example 1]

This experiment was performed in the similar manner as Example 1 except that a conductive layer and an intermediate layer and an insulating layer were not formed.

Time duration of arc discharge occurrence was measured in the similar manner as Example 1. It was verified that time duration of arc discharge was about one second. After the arc discharge, the lead end of the male terminal was rounded.

Thus, it was verified that the invention is advantageous in effectively suppressing deformation and damage of terminals by suppressing arc discharge occurrence at a detachment of the terminals.

To sum up the invention, an inventive arc discharge suppressive terminal is rendered into an electrically connectable state with a counterpart terminal by engaging with the counterpart terminal. The terminal comprises a region having a last contact part with the counterpart terminal when the terminal is disengaged from the counterpart terminal, and means for preventing the terminal from being damaged by arc discharge liable to occur in the region.

To prevent the terminal from being damaged by arc discharge, it may be preferably appreciated that the region is formed with an insulating section, and the conductive section is formed on a surface of the insulating section, the conductive section being electrically connectable to the counterpart terminal.

The insulating section may be preferably formed on at least an outer portion of the terminal including a region corresponding to a last contact part of the terminal which is rendered into contact with the counterpart terminal at a final stage of disengagement of the terminals. The conductive layer may be preferably formed on an upper surface of the insulating member to be electrically connectable to a main body of the terminal. The conductive layer is formed at such a location as to be detached from the counterpart terminal at the final stage of disengagement.

The arc discharge suppressive terminal may be formed of an integral member. Preferably, the terminal may be a two-piece member constructed in such a manner that a terminal lead portion is jointed to a terminal main body made of a conductive member at a front end of the terminal main body. In this case, preferably, the terminal lead portion may include a primary part with at least a surface thereof made of an insulating material, and a conductive layer may be formed on the surface of the primary part to be electrically connected to the terminal main body.

In this arrangement, since the terminal is constructed by the terminal main body made of a conductive member and the terminal lead portion including an insulating member, parts for constituting the terminal (particularly, terminal main body) can be mass-produced, and production thereof is facilitated.

In the above arrangement, it is possible to mold the entirety of the primary part of the terminal lead portion with an insulating material. This arrangement is advantageous in that durability of the insulating portion is improved compared to a case where a thin insulating film is formed on the surface of the primary part, thereby securely maintaining arc suppressing function due to the existence of the insulating portion.

In light of connection between the conductive layer of the terminal lead portion and the terminal main body, it may be preferable that a resiliently deformable spring contact portion is formed on the terminal main body in such a manner as to be rendered into pressing contact with the conductive layer of the terminal lead portion in a resiliently deformed state.

In this arrangement, the spring contact portion can be securely contacted to the conductive layer of the terminal lead portion by utilizing a biasing force due to resilient deformation of the spring contact portion. Thus, the connection of the conductive layer of the terminal lead portion and the terminal main body can be secured.

The thinner the conductive layer is, the higher the electric resistance is. Therefore, if a distance between a contact position of the spring contact portion with the conductive layer and a position at which the conductive layer is detached from the counterpart terminal at a final stage of disengagement is long, there is a likelihood that current flows in the conductive layer between these positions which may result in heated state of the terminals. In view of this, it is preferable to configure the terminal in such a manner that the spring contact portion has a rear end thereof connected to the terminal main body and a front end thereof which is made into a resiliently deformable free end, and the front end is rendered into contact with the conductive layer of the terminal lead portion in a state that the front end is resiliently deformed.

In this arrangement, the contact position of the spring contact portion with the conductive layer of the terminal lead portion can be closer to a position (generally, a lead most end position) where arc discharge is likely to generate on the conductive layer. Thus, heated state of the conductive layer between the aforementioned positions can be effectively suppressed.

It may be preferable to construct the terminal in such a manner that the terminal main body is formed with an engaging portion engageable with the terminal lead portion and the spring contact portion is formed at a position independently of the engaging portion. Thus, a mechanical connecting site (engaging portion) for mechanically connecting the terminal main body to the terminal lead portion and an electrical connecting site (spring contact portion) are independently provided. With this arrangement, the terminal main body and the terminal lead portion can be securely connected while reducing a mechanical burden at the spring contact portion and suppressing deformation thereat.

An inventive arc discharge suppressive terminal which is rendered into an electrically connectable state with a counterpart terminal by engaging with the counterpart terminal

preferably at least part of a contact portion of the terminal in contact with the counterpart terminal in an engagement with the counterpart terminal may include a non-formation area of the insulating layer to render the terminal into direct contact with the counterpart terminal or indirect contact with the counterpart terminal via the conductive layer.

Preferably, in the above arrangement, the conductive layer may be made of a thin film.

Further, a pair of terminals according to the invention includes an arc discharge suppressive male terminal and a female (counter part) terminal engageable with the male terminal. The terminal pair is constructed in such a manner that an electric contact part of the female terminal is rendered into contact with an exposed portion (a conductive layer non-formation area) on the main body of the male terminal in a state that the male terminal and the female terminal are in a completely engaged state.

In this arrangement, electric connection between the terminals in an engaged state is performed by direct contact of the terminal main body of the male terminal with the female terminal (in the case where the entirety of the male terminal is formed of a conductive material) not through the conductive layer. This arrangement is advantageous in securely performing electric connection compared to a case where the female terminal is contacted merely with the conductive layer.

In the above arrangement, it is preferable that the female terminal may be provided with a contact portion which is rendered into contact with the male terminal at a forward position from the electric contact part in a terminal disengaging direction, and the contact portion is provided at such a position that the contact portion is detached from the conductive layer of the male terminal after the electric contact part is detached therefrom when the male terminal is disengaged from the female terminal to suppress arc discharge.

In the above arrangement, since the contact portion at which arc discharge may generate and the electric contact part are provided independently, life of the terminal pair can be extended while effectively protecting the electric contact part. This arrangement provides secured electric connection between the terminals.

More specifically, it is preferable that a spring contact piece is formed at a front end of the female terminal, the spring contact piece has a front end resiliently deformable, and the front end of the spring contact piece is so configured as to be rendered into contact with the conductive layer of the male terminal in a state that the front end of the spring contact piece is resiliently deformed.

In this arrangement, arc discharge can be performed at a position forwardly away from the female terminal main body. This arrangement is advantageous in that the female terminal can be securely protected and that the contact between the spring contact piece and the conductive layer can be secured by utilizing a resilient force due to resilient deformation of the spring contact piece for arc discharge.

Moreover, a connector according to the invention comprises the arc discharge suppressive terminal as mentioned above and a housing for accommodating the terminal therein.

Furthermore, an inventive method for manufacturing an arc discharge suppressive terminal which is rendered into an electrically connectable state by engaging with a counterpart terminal comprises the steps of: producing a terminal main body made of a conductive material; producing a terminal lead portion including a primary part with at least a surface thereof made of an insulating material and a conductive layer which is formed on the surface of the primary part; and jointing the terminal lead portion to the terminal main body at a front end of the terminal main body in such a manner that the conductive layer is is electrically connected with the main body.

In the above method, the terminal main body made of a conductive material and the terminal lead portion including an insulating material are independently produced, and then, the terminal main body and the terminal lead portion are jointed together to assemble the entirety of the terminal. This arrangement enables to mass-produce respective parts with ease. Accordingly, compared to a method in which an insulating layer and a conductive layer are provided on a predetermined region on a lead portion of a terminal which is integrally molded, the production process is simplified and productivity can be remarkably improved.

In the case where a conductive film is formed by etching the surface of an insulating section, it is highly likely that the terminal main body which is not provided with the insulating section may be corroded by the etching process if the entirety of the terminal is integrally molded. In view of this , in the above method, preferably, the step of producing the terminal lead portion includes a step of producing the primary part of the terminal lead portion, and a step of etching the surface of the primary part to form a conductive film. Then, the thus constructed terminal lead portion is jointed to the terminal main body. This arrangement facilitates the etching process which is required for forming a conductive film without affecting the terminal main body.

Preferably, the primary part of the terminal lead portion is integrally molded by an insulating material. This arrangement eliminates an additional step of forming an insulating layer, which further simplifies the production process.

This application is based on patent application Nos. 2000-361799, and 2001-225614, and 2001-310027 filed in Japan, the contents of which are hereby incorporated by references.

Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the invention, they should be construed as being included therein.


Anspruch[de]
Ein Anschluss (1; 101; 202; 301 oder 2; 102; 202; 302), der elektrisch mit einem Gegenanschluss (2; 102; 202; 302 oder 1; 101; 201; 301) durch Eingriff mit dem Gegenanschluss verbindbar ist und der aufweist: einen Hauptkörper (1a; 102; 202; 314;) aus einem leitfähigen Material, einen isolierenden Abschnitt (1c; 111; 211e'; 313), der an wenigstens einer Oberfläche eines Abschnitts des Anschlusses einschließlich eines Bereiches (1 e) vorgesehen ist, der in Kontakt mit dem Gegenanschluss in einer Endstufe ist, während sich der Anschluss von dem Gegenanschluss löst, und eine elektrisch leitfähige Schicht (1 d; 101 d; 201 d; 301), der an dem isolierenden Abschnitt ausgebildet ist,

dadurch gekennzeichnet, dass

die elektrisch leitfähige Schicht elektrisch mit dem Hauptkörper verbunden ist.
Der Anschluss nach Anspruch 1, wobei der Anschluss ein Stecker (1; 101; 201; 301) mit einem Leitungsabschnitt (1 c; 111; 211; 313) ist, der an einem vorderen Ende des Hauptkörpers (1 a; 1 d; 112; 202; 314) ausgebildet ist, wobei der Leiterabschnitt zumindest an der Oberfläche seines Primärteils aus einem isolierenden Material ist und die elektrische leitfähige Schicht (1d; 101 d; 201 d'; 301 d) auf der Oberfläche des Primärteils ausgebildet ist. Der Anschluss nach Anspruch 2, wobei der Hauptkörper (1 b, 1 a) und der Leiterabschnitt einstückig ausgebildet sind und eine elektrisch isolierende Schicht (1 c) an der äußeren Oberfläche des Leiterabschnittes ausgebildet ist, wobei die elektrisch leitfähige Schicht (1 e) auf der elektrisch isolierenden Schicht (1 c) ausgebildet ist und sich weiter erstreckt, um auf einem Abschnitt des Hauptkörpers (1a) für eine elektrische Verbindung hiermit ausgebildet zu sein. Der Anschluss nach Anspruch 3, wobei die Gesamtheit des Primärteils des Leiterabschnittes (111; 211; 313) aus einem isolierenden Material gegossen und mit dem Hauptkörper (112; 212; 314) zu verbinden ist. Der Anschluss nach Anspruch 3, wobei der Leiterabschnitt (313) des Anschlusses mit dem Hauptkörper (314) verbunden ist, wobei ein elastisch verformbarer Federkontaktabschnitt (314c) an dem Hauptkörper derart ausgebildet ist, dass er in Druckkontakt mit der leitfähigen Schicht (301 d) des Leiterabschnittes (313) in einem elastisch verformten Zustand bringbar ist. Der Anschluss nach Anspruch 5, wobei der Federkontaktabschnitt (314c) ein hinteres Ende in Verbindung mit dem Hauptkörper und ein vorderes Ende hat, welches ein elastisch verformbares freies Ende ist, wobei das vordere Ende (314p) in Kontakt mit der leitfähigen Schicht (301 d) des Leiterabschnittes bringbar ist, wobei das Vorderende elastisch verformt wird. Der Anschluss nach Anspruch 5, wobei der Hauptkörper (314) mit einem Eingriffsabschnitt (314d) versehen ist, der mit dem Leiterabschnitt in Eingriff bringbar ist, wobei der Federkontaktabschnitt (314) unabhängig vom Eingriffsabschnitt ausgebildet ist. Der Anschluss nach Anspruch 1, wobei die elektrisch leitfähige Schicht (1 d) so ausgebildet ist, dass ein Teil des Hauptkörpers (1a) freigelegt wird, um den freigelegten Abschnitt in direkten Kontakt mit dem Gegenanschluss (2a) zu bringen. Der Anschluss nach einem der Ansprüche 1 bis 8, wobei die leitfähige Schicht aus einem dünnen Film gemacht ist. Ein Paar von Anschlüssen einschließlich des Anschlusses nach einem der Ansprüche 1 bis 9 und einem Gegenanschluss, wobei der Anschluss ein Stecker (1) ist und der Gegenanschluss eine Buchse (2) ist, wobei das Anschlusspaar derart aufgebaut ist, dass ein elektrisches Kontaktteil (2a) der Buchse in Kontakt mit dem freiliegenden Abschnitt eines Hauptkörpers (1 a) des Steckers bringbar ist, wenn der Stecker und die Buchse in einem vollständigen Eingriffszustand sind. Das Anschlusspaar nach Anspruch 10, wobei die Buchse mit einem Kontaktabschnitt (2e) versehen ist, der an einer derartigen Position angeordnet ist, dass der Kontaktabschnitt von der leitfähigen Schicht des Steckers in einer Endstufe der Trennung des Steckers von der Buchse gelöst wird, um eine Bogenentladung zu unterdrücken. Das Anschlusspaar nach Anspruch 10 oder 11, wobei ein Federkontaktstück (322) an einem vorderen Ende der Buchse ausgebildet ist, wobei das Federkontaktstück ein elastisch verformbares vorderes Ende hat, wobei das vordere Ende des Federkontaktstückes so ausgebildet ist, dass es in Kontakt mit der leitfähigen Schicht des Steckers in einem Zustand bringbar ist, wo das vordere Ende des Federkontaktstücks elastisch verformt wird. Ein Verbinder mit dem Anschluss nach einem der Ansprüche 1 bis 9 und einem Gehäuse zur Aufnahme des Anschlusses hierin. Ein Verfahren zur Herstellung eines Anschlusses nach Anspruch 1, der elektrisch mit einem Gegenanschluss durch einen Eingriff hiermit verbindbar ist, aufweisend die Schritte von: Herstellen eines Anschlusshauptkörpers (112; 202; 314) eines leitfähigen Teils; Herstellen eines Anschlussleiterabschnitts (111; 211; 313) einschließlich eines Primärteils, wobei wenigstens eine Oberfläche hiervon aus einem isolierenden Material und einer leitfähigen Schicht (101 d; 201 d'; 301 d) ist, welche auf der Oberfläche des Primärteils ausgebildet ist; und Verbinden des Anschlussleiterabschnittes mit dem Anschlusshauptkörper an einem vorderen Ende des Anschlusshauptkörpers derart, dass die leitfähige Schicht elektrisch mit dem Hauptkörper verbunden wird. Das Verfahren nach Anspruch 14, wobei der Schritt der Herstellung des Anschlussleiterabschnittes (111; 211; 313) den Schritt des Herstellens des Primärteils des Anschlussleiterabschnittes enthält und einen Schritt des Ätzens der Oberfläche des Primärteils gefolgt von einer Platierung des Primärteils, um die leitfähige Schicht zu bilden. Das Verfahren nach Anspruch 14 oder 15, wobei das Primärteil des Anschlussleiterabschnittes (111; 211; 313) einstückig aus einem isolierenden Material gegossen ist.
Anspruch[en]
A terminal (1; 101; 201; 301 or 2; 102; 202; 302) which is electrically connectable with a counterpart terminal (2; 102; 202; 302 or 1; 101; 201; 301) by engagement with the counterpart terminal, and which comprises a main body (1a; 112; 202; 314) made of a conductive material, an insulating section (1c; 111; 211e'; 313) provided at least on a surface of a portion of the terminal including a region (1e) which is in contact with the counter part terminal at a final stage while the terminal is being disengaged from the counterpart terminal, and an electrically conductive layer (1d; 101d; 201d'; 301) formed on the insulating section,

characterized in that

said electrically conductive layer is electrically connected with the main body.
The terminal according to claim 1, wherein the terminal is a male terminal (1; 101; 201; 301) including a lead portion (1c; 111; 211; 313) which is formed at a front end of the main body (1a; 1d; 112; 202; 314), the lead portion is made of an insulating material at least on the surface of its primary part and the electrically conductive layer (1d; 101d; 201d'; 301d) is formed on the surface of the primary part. The terminal according to claim 2, wherein the main body (1b, 1a) and the lead portion are integrally formed, and an electrically insulating layer (1c) is formed on an outer surface of the lead portion, with the electrically conductive layer (1d) being formed on the electrically insulating layer (1c) and extending further to be formed on a portion of the main body (1a) to be electrically connected therewith. The terminal according to claim 3, wherein an entirety of the primary part of the lead portion (111; 211; 313) is molded of an insulating material and is to be coupled with the main body (112; 212; 314). The terminal according to claim 3, wherein the lead portion (313) of the terminal is coupled with the main body (314), a resiliently deformable spring contact portion (314c) is formed on the main body in such a manner as to be rendered into pressing contact with the conductive layer (301d) of the lead portion (313) in a resiliently deformed state. The terminal according to claim 5, wherein the spring contact portion (314c) has a rear end connected to the main body and a front end which is a resiliently deformable free end, and the front end (314p) is rendered into contact with the conductive layer (301d) of the lead portion with the front end being resiliently deformed. The terminal according to claim 5, wherein the main body (314) is formed with an engaging portion (314d) engageable with the lead portion and the spring contact portion (314c) is formed independently of the engaging portion. The terminal according to claim 1, wherein the electrically conductive layer (1d) is so formed as to expose a part of the main body (1a) to render the exposed portion into direct contact with the counterpart terminal (2a). The terminal according to anyone of claims 1 to 8, wherein the conductive layer is made of a thin film. A pair of terminals including the terminal of anyone of claims 1 to 9 and a counterpart terminal, wherein the terminal is a male terminal (1) and the counterpart terminal is a female terminal (2), the terminal pair is constructed in such a manner that an electric contact part (2a) of the female terminal is rendered into contact with the exposed portion of a main body (1a) of the male terminal when the male terminal and the female terminal are in a completely engaged state. The terminal pair according to claim 10, wherein the female terminal is provided with a contact portion (2e) provided at such a position that the contact portion is disengaged from the conductive layer of the male terminal at the final stage of disengagement of the male terminal from the female terminal to suppress arc discharge. The terminal pair according to claim 10 or 11, wherein a spring contact piece (322) is formed at a front end of the female terminal, the spring contact piece having a front end resiliently deformable, the front end of the spring contact piece is so configured as to be rendered into contact with the conductive layer of the male terminal in a state that the front end of the spring contact piece is resiliently deformed. A connector comprising the terminal of anyone of claims 1 to 9 and a housing for accommodating the terminal therein. A method for manufacturing a terminal according to claim 1 which is electrically connectable with a counterpart terminal by engagement therewith, comprising the steps of: producing a terminal main body(112; 202; 314) of a conductive member; producing a terminal lead portion (111; 211; 313) including a primary part with at least a surface thereof made of an insulating material and a conductive layer (101d; 201d'; 301d) which is formed on the surface of the primary part; and jointing the terminal lead portion to the terminal main body at a front end of the terminal main body in such a manner that the conductive layer is electrically connected with the main body. The method according to claim 14, wherein the step of producing the terminal lead portion (111; 211; 313) includes a step of producing the primary part of the terminal lead portion, and a step of etching the surface of the primary part which follows subjecting the primary part to a plating so as to form the conductive layer. The method according to claim 14 or 15, wherein the primary part of the terminal lead portion (111; 211; 313) is integrally molded of an insulating material.
Anspruch[fr]
Borne (1 ; 101 ; 201 ; 301 ou 2 ; 102 ; 202 ; 302) qui peut être connectée électriquement à une borne de contrepartie (2 ; 102 ; 202 ; 302 ou 1 ; 101 ; 201 ; 301) par coopération avec la borne de contrepartie et qui comprend un corps principal (1a ; 112 ; 202 ; 314) réalisé en un matériau conducteur, une section isolante (1c ; 111 ; 211 e' ; 313) prévue au moins sur une surface d'une partie de la borne incluant une région (1e) qui est en contact avec la borne de contrepartie au niveau d'une étape finale tandis que la borne est en train d'être désengagée de la borne de contrepartie, et une couche électriquement conductrice (1d ; 101d ; 201d' ; 301) formée sur la section isolante,

caractérisée en ce que : ladite couche électriquement conductrice est connectée électriquement au corps principal.
Borne selon la revendication 1, dans laquelle la borne est une borne mâle (1 ; 101 ; 201 ; 301) incluant une partie de connexion (1 c ; 111 ; 211 ; 313) qui est formée au niveau d'une extrémité avant du corps principal (1a ; 1 d ; 112 ; 202 ; 314), la partie de connexion est réalisée en un matériau isolant au moins sur la surface de sa portion primaire et la couche électriquement conductrice (1 d ; 101d ; 201 d' ; 301 d) est formée sur la surface de la portion primaire. Borne selon la revendication 2, dans laquelle le corps principal (1b, 1a) et la partie de connexion sont formées d'un seul tenant et une couche électriquement isolante (1 c) est formée sur une surface externe de la partie de connexion, la couche électriquement conductrice (1 d) étant formée sur la couche électriquement isolante (1 c) et s'étendant davantage de manière à être formée sur une partie du corps principal (1a) pour être connectée électriquement avec. Borne selon la revendication 3, dans laquelle la totalité de la portion primaire de la partie de connexion (111 ; 211 ; 313) est moulée en un matériau isolant et doit être couplée avec le corps principal (112 ; 212 ; 314). Borne selon la revendication 3, dans laquelle la partie de connexion (313) de la borne est couplée avec le corps principal (314), une partie de contact élastique déformable élastiquement (314c) est formée sur le corps principal de manière à être mise en contact par pression avec la couche conductrice (301 d) de la partie de connexion (313) dans un état déformé élastiquement. Borne selon la revendication 5, dans laquelle la partie de contact élastique (314c) comporte une extrémité arrière connectée au corps principal et une extrémité avant qui est une extrémité libre déformable élastiquement, et l'extrémité avant (314p) est mise en contact avec la couche conductrice (301 d) de la partie de connexion, l'extrémité avant étant déformée élastiquement. Borne selon la revendication 5, dans laquelle le corps principal (314) est formé de manière à comporter une partie de coopération (314d) qui peut coopérer avec la partie de connexion et la partie de contact élastique (314c) est formée indépendamment de la partie de coopération. Borne selon la revendication 1, dans laquelle la couche électriquement conductrice (1 d) est formée de manière à exposer une portion du corps principal (1a) pour mettre en contact direct la partie exposée avec la borne de contrepartie (2a). Borne selon l'une quelconque des revendications 1 à 8, dans laquelle la couche conductrice est réalisée en un film mince. Paire de bornes incluant la borne selon l'une quelconque des revendications 1 à 9 et une borne de contrepartie, dans laquelle la borne est une borne mâle (1) et la borne de contrepartie est une borne femelle (2), la paire de bornes est construite de telle sorte qu'une partie de contact électrique (2a) de la borne femelle soit mise en contact avec la partie exposée d'un corps principal (1a) de la borne mâle lorsque la borne mâle et la borne femelle sont dans un état complètement engagé. Paire de bornes selon la revendication 10, dans laquelle la borne femelle est munie d'une partie de contact (2e) qui est prévue en une position qui est telle que la partie de contact est désengagée de la couche conductrice de la borne femelle lors de l'étape finale de désengagement de la borne mâle vis-à-vis de la borne femelle afin de supprimer une décharge en arc. Paire de bornes selon la revendication 10 ou 11, dans laquelle une pièce de contact élastique (322) est formée au niveau d'une extrémité avant de la borne femelle, la pièce de contact élastique comportant une extrémité avant déformable élastiquement, l'extrémité avant de la pièce de contact élastique étant configurée de manière à être mise en contact avec la couche conductrice de la borne mâle dans un état dans lequel l'extrémité avant de la pièce de contact élastique est déformée élastiquement. Connecteur comprenant la borne selon l'une quelconque des revendications 1 à 9 et un boîtier pour loger la borne dedans. Procédé de fabrication d'une borne selon la revendication 1, laquelle peut être connectée électriquement avec une borne de contrepartie par engagement avec, comprenant les étapes de : production d'un corps principal de borne (112 ; 202 ; 314) d'un élément conducteur ; production d'une partie de connexion de borne (111 ; 211 ; 313) incluant une portion primaire dont au moins une surface est réalisée en un matériau isolant et une couche conductrice (101d ; 201d' ; 301 d) qui est formée sur la surface de la portion primaire ; et jonction de la partie de connexion de borne sur le corps principal de borne au niveau d'une extrémité avant du corps principal de borne de telle sorte que la couche conductrice soit connectée électriquement avec le corps principal. Procédé selon la revendication 14, dans lequel l'étape de production de la partie de connexion de borne (111 : 211 ; 313) inclut une étape de production de la portion primaire de la partie de connexion de borne et une étape de gravure de la surface de la portion primaire qui suit la soumission de la portion primaire à un placage de manière à former la couche conductrice. Procédé selon la revendication 14 ou 15, dans lequel la portion primaire de la partie de connexion de borne (111 ; 211 ; 313) est moulée d'un seul tenant en un matériau isolant.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com