PatentDe  


Dokumentenidentifikation EP1215810 12.07.2007
EP-Veröffentlichungsnummer 0001215810
Titel Sensorloses Ansteuerverfahren
Anmelder WILO AG, 44263 Dortmund, DE
Erfinder Tolksdorf, Frank, 58675 Hemer, DE;
Lütkenhaus, Norbert, 59399 Olfen, DE;
Heinrich, Klaus, 44227 Dortmund, DE;
Böttcher, Helmut, 42549 Velbert, DE;
Kiffer, Björn, 44137 Dortmund, DE;
Albers, Frank, 58239 Schwerte, DE
DE-Aktenzeichen 50112555
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument DE
EP-Anmeldetag 08.12.2001
EP-Aktenzeichen 011291614
EP-Offenlegungsdatum 19.06.2002
EP date of grant 30.05.2007
Veröffentlichungstag im Patentblatt 12.07.2007
IPC-Hauptklasse H02P 6/08(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H02P 6/18(2006.01)A, L, I, 20051017, B, H, EP   H02P 6/14(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[de]

Die vorliegende Erfindung betrifft ein Verfahren zur Leistungsregelung eines permanenterregten Synchronmotors, der insbesondere zum Antrieb einer Kreiselpumpe dient und der einen eine Statorwicklung aufweisenden Stator und mit einem Permanentmagneten aufweisenden Rotor hat, wobei die Statorwicklung zur Erzeugung einer bestimmten Drehzahl mit einer Wechselspannung entsprechender Frequenz beaufschlagt wird, die einen um einen Phasenwinkel verschobenen Wechselstrom gleicher Frequenz erzeugt, und wobei die Amplitude der angelegten Wechselspannung eine Ausgangsleistung erzeugt.

Generell tritt bei derartigen Synchronmotoren eine kritische Situation auf, wenn die Kraft zwischen dem rotierenden Statorfeld und dem mitgeschleppten Rotor abreißt. Dann gerät der Rotor in eine schwingende Hin- und Herbewegung und der Motor bleibt in diesem undefinierten Zustand stehen. Um dieses Problem auszuschließen, wird bei den bislang verwendeten Verfahren zur Ansteuerung derartiger Motoren die momentane Position des Rotors im Verhältnis zur Phase der antreibenden Wechselspannung überwacht. Dies kann über eine Beobachtung mittels Hall-Sensoren geschehen, wobei diese Sensoren die Fertigungskosten der Motoren stark beeinträchtigen und deren Zuverlässigkeit mindern. Es ist auch bekannt, die Position des Rotors über die von seinen Permanentmagneten in den Stator-Wicklungen erzeugte rückinduzierte Spannung (BEMF) festzustellen, deren Messung in Abtastlücken möglich ist, in denen die antreibende Spannung ausgesetzt wird. Die Verfahren, die eine Messung der BEMF nutzen, sind nachteilig, da sie wegen der Abtastlücken zu einer erhöhten Geräuschentwicklung führen.

Es sind weiterhin Regelungsverfahren bekannt, die auf den Motor beschreibenden mathematischen Modellen beruhen. Diese Verfahren sind nachteilig, da sie auf jeden Motortyp mit hohem technischen Aufwand angepaßt werden müssen. Sie gehen daher mit hohen Entwicklungskosten und großem rechnerischen Aufwand einher, ohne zu einer befriedigenden Zuverlässigkeit der Motoren zu führen.

Aufgabe der vorliegenden Erfindung ist es, ein Regelverfahren zu schaffen, das bei einfacher und kostengünstiger Realisierbarkeit einen gleichmäßigen und geräuscharmen Motorlauf ermöglicht und eine hohe Zuverlässigkeit des Motors gewährleistet.

Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst.

Der wesentliche Gedanke der Erfindung resultiert aus der Erkenntnis, daß der Leistungsfaktor cosϕ, also die Phasenverschiebung zwischen der erregenden Wechselspannung und dem damit im Stator erzeugten Strom, eine Abhängigkeit vom Betriebspunkt, also von der Belastung und von der Motordrehzahl aufweist. Diese Abhängigkeit kann für einen individuellen Motor oder einen Motortyp experimentell ermittelt und registriert werden, so daß jederzeit die "theoretische" Phasenverschiebung für einen eingestellten Betriebspunkt bekannt ist. Damit kann unter Zugrundelegung des zeitlichen Verlaufes der Wechselspannung und dem gemessenen Betriebspunkt der Zeitpunkt des Nulldurchgangs des Stromes vorhergesagt werden. Zu diesem Zeitpunkt kann der Strom beispielsweise anhand der BEMF ohne einen bemerkenswerten Eingriff in den Gleichlauf des Motors bestimmt und seine Abweichung vom Sollwert "Null" gemessen werden. Diese Abweichung des Stromes vom Sollwert repräsentiert die momentane Belastung des Motors und die Amplitude und/oder die Frequenz der Wechselspannung kann entsprechend angepaßt werden, um den Istwert des Stromes an den Sollwert anzunähren.

Die wesentlichen Verfahrensschritte beinhalten also zunächst die Messung der Abhängigkeit zwischen Betriebspunkt und Phasenverschiebung, die für einen Motor oder einen Motortyp ermittelt wird. Der funktionale Zusammenhang wird dann in einem der Regelung zur Verfügung stehenden Speicher beispielsweise als Tabelle oder Funktion niedergelegt wird, so daß auf die Daten zugegriffen werden kann. Während des Motorlaufes geschieht die Regelung derart, daß die aktuelle Drehzahl gemessen oder registriert wird und anhand des funktionalen Zusammenhangs der theoretische Stromnulldurchgang, also der Zeitpunkt, zu dem der Strom sein Vorzeichen wechseln soll, bestimmt wird. Mit dem Wissen um den theoretischen Stromnulldurchgang wird zu dem Zeitpunkt der tatsächliche Strom bestimmt. Dieser kann größer, kleiner oder gleich dem Wert "Null" sein. Entsprechend der Messung wird die Amplitude der Wechselspannung gesenkt, wenn der gemessene Strom negativ ist, oder es wird die Amplitude der Wechselspannung erhöht, wenn der gemessene Strom positiv ist.

Das Verfahren beruht somit letztendlich auf einer Leistungsfaktorregelung, bei der die Phasenverschiebung zwischen der Motorspannung und dem Motorstrom je nach der Drehzahl und/oder der aktuellen Belastung auf den jeweils erforderlichen Wert eingestellt werden. Der Leistungsfaktor gibt Aussage darüber, wie sich EMK, Motorspannung und Motorstrom im jeweiligen Betriebspunkt verhalten. Eine Aussage über die genaue Position des Rotors ist mit einer längeren Austastphase möglich und könnte in besonderen Fällen für einen anderen Typ von Regelung eingesetzt werden. In einer besonders vorteilhaften Ausführungsform wird der funktionale Zusammenhang zwischen der Drehzahl und der Phasenverschiebung zudem noch in Abhängigkeit der Ausgangsleistung ermittelt und gespeichert. Wie von anderen Regelungen bekannt, kann es auch im vorliegenden Fall vorteilhaft sein, Grenzwerte vorzugeben, innerhalb derer sich die ermittelte Stromstärke befinden muß. Bei einem Überschreiten der Grenzwerte können Maßnahmen, wie ein Aussetzen und Neustarten der Ansteuerung vorgesehen werden.

Die wesentlichen Vorteile der Erfindung liegen einerseits in der einfachen und kostengünstigen Realisierung des Verfahrens. So läßt sich das Verfahren mit den ehedem in der Steuerelektronik eines Elektromotors vorhandenen Komponenten durchführen. In seiner Einfachheit zeichnet sich das Regelverfahren durch eine hohe Zuverlässigkeit aus. Andererseits ist es besonders vorteilhaft, daß die Laufruhe des Motors durch die Regelung nicht gestört wird. Das resultiert daraus, daß die Messung des Stromes während des Nulldurchganges, also im stromlosen Zustand, stattfindet. Mit dem Verfahren wird ein sicherer Betrieb des Motors in seinem optimalen Wirkungsgrad über die gesamte Kennlinie gewährleistet, wobei unterschiedliche Drehzahlen und mögliche Lastschwankungen berücksichtigt werden. Die Vorteile kommen dabei besonders zur Geltung, wenn die angelegte Wechselspannung durch eine Modulation von Pulsweiten erzeugt wird (PWM). der Der tatsächliche Strom kann in besonderen Fällen durch Verölängerung der Austastzeit ermittelt werden.

Die Erkennung der Phasenlage von Phasenstrom zur Statorspannung kann auf zwei Arten geschehen: So ist einerseits eine analoge Messung des Phasenstroms und des Nulldurchgangs mittels einer Software respektive einer Hardware möglich. Diese Strommessung findet vorteilhafterweise im Gleichspannungszwischenkreis statt. Bei dieser Lösung ist eine Einsparung an Hardware für die Phasenstrommessung möglich. Andererseits kann die Modulation der Pulsweite für eine PWM-Periode, also in diesen Fällen für etwa 50 µs ausgesetzt und die durch die BEMF erzeugte Phasenspannung und/oder die rückinduzierte Spannung während dieser Austastlücke gemessen werden. Die zweite Lösung, bei der die Phasenverschiebung des Stromes über eine Messung der in der Wicklung rückinduzierten Spannung ermittelt wird, ist kostengünstiger, da sie mit einem einfachen Spannungsteiler realisiert werden kann. Bei diesem Verfahren, das nachfolgend näher beschrieben werden soll, kann der Phasenwinkel direkt gemessen werden. Diese Art der Messung läßt sich realisieren, wenn der Synchronmotor ein sensorloser elektronisch kommutierter Elektromotor ist.

Eine besondere Ausführungsform des erfindungsgemäßen Verfahrens ist in den Figuren 1 bis 3 dargestellt und wird im folgenden näher beschrieben. Es zeigen:

Figur 1:
ein Ersatzschaltbild eines Permanenmagnet Synchronmotors
Figur 2:
den Stromverlauf bei I ≠ 0 und
Figur 3:
ein Schema des Regelkreises.

Der mit seinem Ersatzschaltbild nach Figur 1 gezeigte Motor hat einen dreiphasig ausgebildeten Stator und einen vierpoligen Permanentmagnetrotor und kann nährungsweise wie folgt beschrieben werden: Uu = Rsiu + Ls diu / dt + ke ωr sin(⊖r) + UN Uv= Rsiv + Ls div/ dt + ke ωr sin(⊖r- 2π/3) +UN Uw = Rsiw + Ls diw/ dt + ke ωr sin(⊖r- 4π / 3) + UN

Dabei sind Uu, Uv und Uw die Anschlußspannungen, Rs der Wicklungswiderstand; Ls die Wicklungsinduktivität, iu, iv und iw die Phasenströme, ⊖r die Rotorposition, ke die EMK-Konstante, ωr die Winkelgeschwindigkeit des Rotors und UN die Sternpunktspannung des Stators.

Bei der Variante, die mit einem einfachen Spannungsteiler realisiert werden kann, wird der Austastzeitpunkt in Relation zur Phasenspannung zeitlich an der Position durchgeführt, die dem Sollwert des Stromnulldurchgangs entspricht. Im eingeregelten Betrieb wird in diesem Fall stets im nahezu stromlosen Zustand ausgetastet, was zusätzliche Geräusche verhindert. Drei Fälle müssen dabei unterschieden werden:

  • a) Motorstrom und EMK sind in Phase, Das Austasten erfolgt im Nullgurchgang von iu (Sollzustand). Dann gilt: Uu = Rs iu + Ls diu / dt + ke ωr sin(⊖r) + UN → Uu = UN Da die Phasen Uv und Uw weiterhin angesteuert werden, stellt sich als Augenblickswert für Uu die halbe DC-Spannung ein. Spannungen im Bereich 0 < Uu < ∞ lassen auf das Vorzeichen des Phasenwinkels zwischen EMK und iu schließen. Dabei gilt: ke ωr sin(⊖r) > 0 → Uu > UN → positiver Phasenwinkel EMK / iu ke ωr sin(⊖r) < 0 → Uu < UN → negativer Phasenwinkel EMK / iu
  • b) Das Austasten erfolgt wenn iu < 0. Dann gilt nach Figur 2a, daß in der Austastphase die entsprechenden IGBT's der Phase U gesperrt werden. Durch die Selbstinduktion in der Motorwicklung LSU fließt ein Strom über die Freilaufdiode nach UDC, wodurch sich an U eine Spannung in Höhe von UDC einstellt. Die Impulslänge läßt einen Rückschluß auf den aktuellen Strom und somit über die Phasenlage des Stroms zum Zeitpunkt des Austastens zu. Der Phasenwinkel zwischen iu und dem Sollwert erhält somit ein negatives Vorzeichen.
  • c) Das Austasten erfolgt wenn iu > 0. Dann gilt nach Figur 2b, daß in der Austastphase die entsprechenden IGBT's der Phase U gesperrt werden. Durch die Selbstinduktion in der Motorwicklung LSU fließt ein Strom über die Freilaufdiode in den Motor hinein, wodurch sich an U eine Spannung in Höhe von GND einstellt. Der Phasenwinkel zwischen iu und dem Sollwert erhält somit ein positives Vorzeichen.

Mit den so erhaltenen Informationen wird für beide Verfahren der Phasenlageerkennung das in Figur 3 dargestellte Reglerprinzip abgleitet. Ein solcher Leistungsfaktorregler läßt sich unter Verwendung der beschriebenen Phasenlageerkennung mit folgenden Parametern umsetzen. Der Sollwert des Reglers, der im ersten Ansatz als P-Regler ausgeführt ist, beträgt λ = 0.96. Die Stellgröße ist die Amplitude der Motorspannung und die Beschleunigung (Rampenzeit) beträgt ca. 1000 Umdrehungen pro Sekunde. Dabei ist es möglich, Verbesserungen des Reglers bezüglich seines Zeitverhaltens und eine Anpassung der Stellgrößenänderungen für Extremfälle schneller Lastwechsel vorzunehmen.


Anspruch[de]
  1. Verfahren zur Leistungsregelung eines permanenterregten Synchronmotors, insbesondere zum Antrieb einer Kreiselpumpe, mit einem eine Statorwicklung aufweisenden Stator und mit einem Permanentmagneten aufweisenden Rotor, wobei die Statorwicklung zur Erzeugung einer bestimmten Drehzahl mit einer Wechselspannung entsprechender Frequenz beaufschlagt wird, die einen um einen Phasenwinkel verschobenen Wechselstrom gleicher Frequenz erzeugt, und wobei die Amplitude der angelegten Wechselspannung eine Ausgangsleistung erzeugt,

    dadurch gekennzeichnet,
    • daß eine Abhängigkeit zwischen einem durch Drehzahl und/oder Belastung definierten Betriebspunkt und der Phasenverschiebung ermittelt und der funktionale Zusammenhang in einem der Regelung zur Verfügung stehenden Speicher niedergelegt wird,
    • daß zur Regelung die aktuelle Drehzahl ermittelt und anhand des funktionalen Zusammenhangs der Zeitpunkt bestimmt wird, zu dem der Strom sein Vorzeichen wechseln soll (theoretischer Stromnulldurchgang),
    • daß der Strom im theoretischen Stromnulldurchgang bestimmt wird,
    • daß die Amplitude der Wechselspannung gesenkt wird, wenn der gemessene Strom negativ ist, oder
    • daß die Amplitude der Wechselspannung erhöht wird, wenn der gemessene Strom positiv ist.
  2. Verfahren nach Anspruch 1,

    dadurch gekennzeichnet, daß die angelegte Wechselspannung durch eine Modulation von Pulsweiten erzeugt wird.
  3. Verfahren nach Anspruch 2,

    dadurch gekennzeichnet, daß der tatsächliche Strom in einer Abtastlücke ermittelt wird, in der die Pulsweitenmodulation kurzzeitig aussetzt.
  4. Verfahren nach Anspruch 3,

    dadurch gekennzeichnet, daß der tatsächliche Strom über eine Messung der in der Wicklung rückinduzierten Spannung ermittelt wird.
  5. Verfahren nach einem der vorherigen Ansprüche,

    dadurch gekennzeichnet, daß die Strombestimmung als direkte Messung am Gleichspannungszwischenkreis geschieht.
  6. Verfahren nach einem der vorherigen Ansprüche,

    dadurch gekennzeichnet, daß Grenzwerte vorgegeben werden, innerhalb derer sich die ermittelte Stromstärke befinden muß, wobei die Ansteuerung ausgesetzt wird, wenn die ermittelte Stromstärke die Grenzwerte überschreitet.
  7. Verfahren nach einem der vorherigen Ansprüche,

    dadurch gekennzeichnet, daß die Abhängigkeit zwischen Drehzahl und Phasenverschiebung vom Hersteller für einen bestimmten Motortyp ermittelt und als Wertetabelle oder Funktion gespeichert wird.
  8. Verfahren nach einem der vorherigen Ansprüche,

    dadurch gekennzeichnet, daß die Position des Rotors anhand einer in der Statorwicklung rückinduzierten Spannung ermittelt wird.
  9. Verfahren nach einem der vorherigen Ansprüche,

    dadurch gekennzeichnet, daß der funktionale Zusammenhang zwischen der Drehzahl und der Phasenverschiebung in Abhängigkeit der Ausgangsleistung ermittelt und gespeichert wird.
  10. Verfahren nach einem der vorherigen Ansprüche,

    dadurch gekennzeichnet, daß der Synchronmotor ein sensorloser elektronisch kommutierter Elektromotor ist.
  11. Elektromotor zur Durchführung eines Verfahrens nach einem der vorherigen Ansprüche.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com