PatentDe  


Dokumentenidentifikation EP1310857 13.09.2007
EP-Veröffentlichungsnummer 0001310857
Titel System und Verfahren zur Synchronisation von Echtzeituhren in einem Dokumentenverarbeitungssystem
Anmelder Xerox Corp., Rochester, N.Y., US
Erfinder Platteter, Dale T., Fairport, NY 14450, US;
Bosso, Judy C., Fairport, New York 14450, US;
Westfall, Robert S., Rochester, New York 14622, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60221481
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 23.08.2002
EP-Aktenzeichen 020189288
EP-Offenlegungsdatum 14.05.2003
EP date of grant 01.08.2007
Veröffentlichungstag im Patentblatt 13.09.2007
IPC-Hauptklasse G06F 1/12(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]
Background of the Invention

The present invention relates to a system architecture for a document processing system. It finds particular application in conjunction with synchronization of a real-time clock in one or more modules of a multiple feeding and finishing architecture with a master real-time clock in a controller of the document processing system and will be described with particular reference thereto. However, it is to be appreciated that the present invention is also amenable to other like applications.

In the early days of copiers, copies were fed to a tray where the operator took them and performed manual finishing operations. These manual operations ranged from simple collation and stapling to more sophisticated operations such as folding and inserting in an envelope for mailing. Later products incorporated finishing functionality within the print engine to relieve the operator of these manual finishing functions. Finishing operations included collation, stapling, and binding. The same revolution has also occurred in feeding applications. Operators originally placed the document to be copied on the platen, closed the cover and pushed the start print button. Now, automatic document feeders and recirculating document handlers have become commonplace.

Incorporating feeding and finishing functions within the print engine was well received when collation and stapling were the primary operations. However, customers soon required more and more sophisticated feeding and finishing operations. It became increasingly inefficient to follow a course of developing feeding and finishing functions specific to a single product. Such product development was a very time consuming activity, required enormous resources, and led to duplication of activities. Another issue was the large number of third party vendors with experience in the feeding and finishing technologies. It was a waste of resources to duplicate the off-line feeding and finishing functions currently provided by third party vendors. Under these circumstances, a standard for attaching feeding and finishing devices to print engines was developed by Xerox Corporation ("Xerox®"). The standard was used by Xerox® for developing new document processing products and by third party vendors for developing feeding and finishing modules. The third party feeding and finishing modules were compatible with Xerox's print engines and other document processing products.

Certain aspects of the standard are described in U.S. Patent No. 5,629,775 to Platteter et al. ("Platteter '775") and assigned to Xerox®, entitled "System Architecture for Attaching and Controlling Multiple Feeding and Finishing Devices to a Reproduction Machine." The basic modular architecture (i.e., multiple feeding and finishing architecture (MFFA)) of an electronic image processing apparatus in Platteter '775 inherently allowed the duplication of effort for developing feeding and finishing capabilities to be avoided by permitting and encouraging third party vendors to develop or adapt feeding and finishing devices that were compatible with standard print engines. More specifically, Platteter '775 permitted the document feeding and/or finishing modules to be interconnected with the print engine in a networked environment and organized in a sequence that meets the customer's needs for a fully automated job. This permitted finishing or feeder devices to be attached in any order that the operator decided was appropriate for the application.

However, feeding and finishing modules in the networked MFFA include clocks that must be accurately synchronized with a master clock in the master module, the print engine, in order to correctly perform the printing function. This is because the master module controls all the scheduling between the feeding and finishing modules. As document processing systems became more sophisticated the accuracy and precision of the synchronization have become more and more important.

Clock synchronization in the networked MFFA was initially implemented to synchronize the clocks within the feeding and finishing modules using only the network. Due to delays in communications over the network, this type of clock synchronization is no longer sufficient. Network delay is particularly a problem when more than several feeding and/or finishing modules are configured in the document processing system. In other words, as more feeding and finishing modules are added to the system, the delay over the network increases, causing the synchronization of the module clocks with the master clock to be unpredictable, thereby unreliable, and often with unacceptable error. Additionally, variability of network delay occurred due to fluctuations in network traffic as the network was used for communications other than clock synchronization.

In the networked MFFA, the clock synchronization algorithm was typically designed with the feeding and finishing modules requesting the current master clock time and master module responding to the request, both via the network. More specifically, the basic algorithm went as follows: 1) First, a slave module (i.e., feeding or finishing module) read and saved the current value of its clock. 2) The slave module then sent a request, over the network, to the master module requesting a read of the master clock. 3) The master module then read its clock and sent the time value back to the slave module over the network. 4) On receipt of the message from the master module, the slave again read the value of its clock. 5) The slave module then subtracted the two readings it had done of its clock and divided the result by two (2) to get one-half of the delay over the network. 6) The slave then added the result (one-half the delay) to the master clock reading sent by the master module. 7) The slave then compared the adjusted master clock time to the last reading it had done of its clock. The comparison determined whether there was error between the two clocks. 8) Finally, the slave module then adjusted its clock appropriately to account for the error.

The problem with this algorithm is that the communications delay over the network is not exactly the same for both directions. Sometimes the request takes longer than the reply and other times the reply takes longer than the request. All the slave can measure is the total time between when the request is made and when the value from the master is received. Unfortunately, the master clock is read sometime in between when the request is made and when the slave module receives the reply. Accordingly, any algorithm that is based solely on network communications will not be accurate because of the inherent variability of network delay. This variability only gets worse when additional feeding and/or finishing modules communicate over the network.

The present invention contemplates a new and improved method for clock synchronization in a networked MFFA configuration of a document processing system that overcomes the above-referenced problems and others.

US 6,236,277 describes a method of synchronizing the slave clock with the master clock in a industrial control system comprising a controller, the controller further including a master clock, a resource, the resource further including a slave clock related to operational timing of the resource, and electrical interconnections connecting the resource to the controller, the electrical interconnections further including a control bus and a network, the method comprising the steps of saving a value for the master clock in the controller, generating a discrete clock synchronization interrupt signal made of a synchronizing pulse and the value of the master clock in the controller and distributing the discrete interrupt signal to the resource via the control bus, receiving the discrete interrupt signal at the resource and saving a first value of the slave clock and calculating the time difference between saqid first value and said value of the master clock for synchronization purpose.

GB 2 337 347 describes a distributed data processing system.

SUMMARY OF THE INVENTION

It is the object of the present invention to improve system architecture for a document processing system. This object is achieved by providing a method of initially synchronizing the slave clock with the master in a document processing system according to claim 1 and a document processing system according to claim 3. Embodiments of the invention are set forth in the dependent claims.

Brief Description of the Drawings

The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the invention.

  • FIGURE 1 is a block diagram of a document processing system incorporating the present invention;
  • FIGURE 2 is an electrical interconnection diagram of the document processing system of FIGURE 1;
  • FIGURE 3 is a more detailed electrical interconnection diagram of the document processing system of FIGURE 1;
  • FIGURE 4 is an electrical interconnection diagram showing the clock synchronization interrupt signal in accordance with the present invention;
  • FIGURE 5 is a flow chart of a first algorithm for synchronization of real-time clocks in a document processing system in accordance with the present invention; and
  • FIGURE 6 is a flow chart of a second algorithm for synchronization of real-time clocks in a document processing system in accordance with the present invention.

Detailed DescriDtion of the Preferred Embodiments

In describing the present invention, the following terms have been used:

"Real-time" refers to a type of system where system correctness depends not only on outputs, but the timeliness of those outputs. Failure to meet one or more deadlines can result in system failure.

"Hard real-time service" refers to performance guarantees in a real-time system in which missing even one deadline results in system failure.

"Soft real-time service" refers to performance guarantees in a real-time system in which failure to meet deadlines results in performance degradation but not necessarily system failure.

"Local area network (LAN)" refers to a network of interconnected computers or computer-controlled devices (i.e., nodes) and connection devices (e.g., switches and routers) that spans a relatively small area at a single site. Each node has its own CPU which controls local operations and communications with other nodes on the LAN. LAN connections are through direct cables (e.g., unshielded twisted pair, coaxial cable, or optical fiber). One of the most common LAN standards is referred to as Ethernet.

"Ethernet" refers to a LAN protocol developed by Xerox in cooperation with Digital Equipment Corporation (DEC) and Intel in 1976. Ethernet uses a bus or star topology and supports data transfer rates of 10 megabits per second (Mbps). The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies the physical and lower software layers.

"10 Base T" refers to a type of cable used to connect nodes on an Ethernet network. 10 refers to the transfer rate used on standard Ethernet, 10 Mbps. Base means that the network uses baseband communication rather than broadband communications; T stands for twisted pair. The 10 Base T standard uses a twisted pair cable with maximum lengths of 100 meters.

A document processing system can be comprised of multiple modules or resources (i.e., feeding and finishing devices) attached to a print engine. The modules can be added or removed by the user to provide the feeding and/or finishing capabilities they require. The modules must be accurately and precisely synchronized with a master module (i.e., print engine) in order to correctly perform the printing function. The present invention describes a method that allows the control systems within multiple slave modules or resources of a document processing system to be accurately and precisely synchronized with a master clock contained in the master module in order to provide certain performance guarantees. The nature of the performance guarantees that the document processing system must provide can be classified into two broad categories: (1) hard real-time guarantees, when the performance requirements of the system will never be violated and (2) soft real-time guarantees, when the requirements will occasionally, but infrequently, violate the performance requirements.

When providing hard real-time service, the document processing system guarantees apply irrespective of the system functions required to operate simultaneously in order to perform an operation. Consequently, when hard real-time guarantees are required, clock synchronization must be based on the worst-case performance conditions that could be encountered. With soft-real time service, the document processing system cannot guarantee that the performance requirements will be continuously satisfied. Nevertheless, since soft real-time services avoid the worst-case design necessary for hard real-time services, soft real-time services result in a much higher utilization of system resources than hard real-time services. However, the key to the successful deployment of soft real-time services on document processing systems will depend on the effectiveness of the utilization versus performance tradeoffs, which must be conservative enough to ensure that violations of system performance requirements are infrequent, while at the same time ensuring that the system performance is sufficient to make it economically competitive. Depending on the performance required by a particular customer or for a particular operation of the document processing system, the present invention can be implemented for hard real-time service or soft real-time service. Generally, document processing systems are presumed to require hard real-time service. The present invention has been demonstrated to synchronize real-time clocks in slave modules or resources to within one (1) clock cycle of the master clock in the print engine of the document processing system.

With reference to FIGURE 1, a document processing system in accordance with the present invention comprises a marking engine or printer with multiple attached feeding and/or finishing devices. In particular, a marking engine or printer 10 including a user interface with screen 11 is interconnected to multiple document feeding devices 12 and 14 and multiple document finishing devices 16, 18, and 20. As is well known, the feeding devices are sources of printable media like paper for providing the printer 10 with stock for completion of the printing process. Feeding devices are paper trays, and the need for feeding devices is to supply an increased level of printable stock selection to the printer. This could be for the purpose of having multiple colors of tabs or separating stock or front and rear cover stock with a clear coversheet. Or it could be a check printing application where there is a variety of scenes preprinted and each is fed in a collated order to build a check book with the proper cover sheets and rear cover stock. The finishing devices can be any suitable devices such as sorters, compilers, staplers, folders, or trimmers. It should be noted that FIGURE 1 is only one embodiment and meant to illustrate a functional view of the devices rather than actual physical placement.

The feeding and finishing devices (12, 14, 16, 18, 20) may be referred to collectively as resources with respect to the marking engine or printer 10 (i.e., print engine) of the document processing system. The resources are physically attached to the print engine 10 such that sheets can be fed into the print engine 10 from the feeding devices (12, 14) and sheets or sets of sheets can be transferred from the print engine 10 to the finishing devices (16, 18, 20). The resources are attached to each other such that sheets or sets of sheets can be transferred from one device to another. It should be understood that the mechanical specifications of how these resources are connected to the print engine 10 or to one another are not part of the present invention.

With reference to FIGURE 2, the basic electrical interconnections of the document processing system of FIGURE 1 are shown. The electrical interconnections depicted in FIGURE 2 include a system network 34 (e.g., LAN) and a control bus 36. It should be noted that the architecture of FIGURE 2 is modular and can include any combination of resources. The architecture allows expansion to include additional resources, while less resources than the configuration of five (5) shown in FIGURE 2 are also permitted under the present invention. The preferred embodiment of the present invention uses a 10 Base T Ethernet network with nodes connected in a star topology. However, alternate topologies, alternate cabling standards, and alternate network protocol standards that are able to implement synchronization of real-time clocks as described below are also contemplated.

Continuing to refer to FIGURE 2, printed wiring board assembly (PWBA) 26 of feeding device 12 is connected to the system network 34 and the control bus 36. Likewise, PWBA 24 of feeding device 14, controller PWBA 22 of the print engine 10, PWBA 28 of finisher device 16, PWBA 30 of finisher device 18, and PWBA 32 of finisher device 20 are also connected to the system network 34 and the control bus 36. Controller PWBA 22 is also commonly referred to as a controller. Each resource PWBA (24, 26, 28, 30, 32) provides several functions. One is to provide an interface to the system network 34; another function is local control of the resource (12, 14, 16, 18, 20). The resource PWBA (24, 26, 28, 30, 32) contains all the software needed to integrate the resource (12, 14, 16, 18, 20) into the chain of resources controlled by the print engine and forming the document processing system 10. The communications portion of the software on the resource PWBA (24, 26, 28, 30, 32) is common on every PWBA in each of the devices. In addition there is software on the board that is used to control the specific resource (12, 14, 16, 18, 20).

With reference to FIGURE 3, the electrical interconnections of the document processing system of FIGURE 2 are shown in greater detail. Like in FIGURE 2, the electrical interconnections include the system network 34 and the control bus 36. The preferred embodiment of the system network 34 is a star topology with the controller 22 and each resource PWBA (24, 26, 28, 30, 32) connected through a hub 38 (e.g., router). The system network 34 and the hub 38 are responsible for communications between the controller PWBA 22, located in the print engine 10, and the resource PWBAs (24, 26, 28, 30, 32) The system network is a high speed communications network operating at 10 Mbps (e.g., 10 Base T Ethernet) and in one embodiment provides the capability to address from 1 to 32 independent resources.

The control bus 36 distributes discrete control signals between the controller PWBA 22 and the resource PWBAs (24, 26, 28, 30, 32) independent of network communications. In accordance with the present invention, as will be discussed in conjunction with FIGURE 4, a discrete clock synchronization interrupt signal is distributed from the controller PWBA 22 to each resource PWBA (24, 26, 28, 30, 32) via the control bus 36. Each resource PWBA (24, 26, 28, 30, 32) provides isolation of the control bus 36. Each resource PWBA (24, 26, 28, 30, 32) also contains intelligence to control its own operation, including timing and functionality specifications that are specific to the particular device. The removal of a device control from the print engine control enables the integration of most any device to the print engine without having to rewrite the print engine control software.

With reference to FIGURE 4, the PWBAs (22, 24, 26, 28, 30) and the control bus 36 of the document processing system of FIGURE 3 are shown in greater detail. More particularly, the controller PWBA 22 includes a master clock 48 related to the operation and timing of the document processing system 10 and a CPU 50 or other circuitry for generating a discrete clock synchronization interrupt signal 40. In addition, the CPU 50 in the controller PWBA 22 responds to the operational and timing data of the master clock 48 to operate in accordance with the operation and timing requirements of the document processing system. Each resource PWBA (24, 26, 28, 30) includes a slave clock 42 related to the operation and timing of the related resource (12, 14, 16, 18) and a CPU 44 or other circuitry for responding to the discrete clock synchronization interrupt signal 40 from the controller PWBA 22. As described below,an object of the present invention is to synchronize the slave clocks 42 of the resources (12, 14, 16, 18) with the master clock 48 of the controller PWBA 22. More generally, the clock synchronization interrupt signal 40 is used to synchronize operations of all the resources (12, 14, 16, 18) with the controller 22, thereby guaranteeing proper real-time operation of the document processing system.

The clock synchronization interrupt signal 40 is one of the discrete control signals distributed via the control bus 36. More particularly, the discrete clock synchronization interrupt signal 40 is distributed from the controller PWBA 22 to the resource PWBAs (24, 26, 28, 30). Each resource must provide a one to one interconnect for the discrete control bus signals from where the signals enter the device and where they exit the device. With reference to FIGURE 4, for a typical resource PWBA, the discrete clock synchronization interrupt signal 40 is optically isolated between the PWBA (24, 26, 28, 30) and the controller PWBA 22 by an optical buffer 46.

With reference to FIGURE 5, the present invention provides a first algorithm for synchronization of the slave clock 42 within the resources (12, 14, 16, 18) with the master clock 48 in the controller 22 of the document processing system. This first algorithm is performed one time during initialization of the document processing system. On startup, the controller starts a periodic timer 505. The periodic timer establishes a repetitive interval for a clock synchronization cycle (e.g., two (2) minutes) within the document processing system during steady state operations. When the periodic timer expires 510, the controller reads the current time of its master clock 515 and saves the snapshot time 520. The saved value for the master clock is referred to as Master_Clock_Snapshot_Time. Immediately after reading and saving the master clock snapshot time, the controller sends a clock synchronization interrupt signal to the feeding/finishing resources 525.

The following steps are performed by each resource (12, 14, 16, 18) configured in the document processing system upon receipt of the first clock synchronization interrupt signal 530 after startup. After receiving the discrete interrupt, the resource immediately reads the current time of its slave clock 535 and saves the snapshot time 540. The saved value is referred to as Slave_Clock_Snapshot_Time_1. Next, the resource sends a message, using the network, to the controller requesting the Master_Clock_Snapshot_Time 545 to be transmitted to it via the network.

The following steps are performed by the controller 22 each time it receives a request for the last saved Master_Clock_Snapshot_Time 550. First, the controller retrieves the last saved Master_Clock_Snapshot_Time 555. Then, the controller sends the Master_Clock_Snapshot_Time to the requesting resource over the network 560.

The following steps are performed by each resource (12, 14, 16, 18) the first time the resource receives the Master_Clock_Snapshot_Time from the controller 565 after startup. First, the resource reads the current time on its slave clock 570 and saves the snapshot time. The saved value is referred to as Slave_Clock_Snapshot_Time_2. Next, the resource determines the difference between Slave_Clock_Snapshot_Time_1 and Slave_Clock_Snapshot_Time_2 575 by subtracting the first snapshot time from the second. The result is the time elapsed since the discrete clock synchronization interrupt was received. The resource then adds the difference to the Master_Clock_Snapshot_Time 580 to determine a synchronized value. Finally, the resource transfer this result (i.e., the Master_Clock_Snapshot_Time adjusted for elapsed time) to the slave clock 585 and the slave clock is set to the synchronized value. At this point the slave clock 42 is initially synchronized with the master clock 48.

With reference to FIGURE 6, the present invention provides a second algorithm for synchronization of the slave clock 42 within the resources (12, 14, 16, 18) with the master clock 48 in the controller 22 of the document processing system. The second algorithm is performed after the initialization algorithm of FIGURE 5 and periodically during steady state operations according to the clock synchronization cycle (e.g., two (2) minutes) established by the controller's periodic timer. Each time the periodic timer expires 610, the controller reads the current time of its master clock 615 and saves the snapshot time 620. The saved value for the master clock is referred to as Master_Clock_Snapshot_Time. Immediately after reading and saving the master clock snapshot time, the controller sends a clock synchronization interrupt signal to the feeding/finishing resources 625.

The following steps are performed by each resource (12, 14, 16, 18) configured in the document processing system upon receipt of the clock synchronization interrupt signal 630. After receiving the discrete interrupt, the resource immediately reads the current time of its slave clock 635 and saves the snapshot time 640. The saved value is referred to as Slave_Clock_Snapshot_Time. Next, the resource sends a message, using the network, to the controller requesting the Master_Clock_Snapshot_Time 645 to be transmitted to it via the network.

The following steps are performed by the controller 22-each time it receives a request for the last saved Master_Clock_Snapshot_Time 650. First, the controller retrieves the last saved Master_Clock_Snapshot_Time 655. Then, the controller sends the Master_Clock_Snapshot_Time to the requesting resource over the network 660.

The following steps are performed by each resource (12, 14, 16, 18) each time the resource receives the Master_Clock_Snapshot_Time from the controller 665 during steady state operations. First, the resource determines the difference between Master_Clock_Snapshot_Time and the Slave_Clock_Snapshot_Time 690 by subtracting the slave clock time from the master clock time. The result is the error between the slave clock and the master clock when the clock synchronization interrupt was received. The resource then applies an algorithm to gradually adjust the slave clock for the error 695. Once the adjustment algorithm has eliminated the error or reduced it to acceptable limits, the slave clock 42 is synchronized with the master clock 48.

The present invention enables the networked architecture of Platteter '775 to be implemented in document processing systems that provide real-time service, including hard real-time service, independent of the various configurations of feeding and finishing devices available for attachment to the print engine. Such real-time service has been demonstrated by the present invention when the real-time clocks in slave modules or resources are synchronized with the master clock in the print engine. The present invention has also demonstrated the ability to synchronize the resource clocks to within one (1) clock cycle of the master clock. Furthermore, the present invention also continues to permit development of feeding and finishing devices by third party vendors.


Anspruch[de]
Ein Verfahren zum anfänglichen Synchronisieren der Slave-Uhr mit der Hauptuhr in einem Dokumentenverarbeitungssystem, das eine Steuerung (22), wobei die Steuerung weiterhin eine Hauptuhr (48) einschließt, ein Betriebsmittel (26), wobei das Betriebsmittel weiterhin eine Slave-Uhr (42) einschließt, die mit dem betriebsmäßigen Zeitmanagement des Betriebsmittels in Beziehung steht, und elektrische Verbindungen umfasst, die das Betriebsmittel mit der Steuerung verbinden, wobei die elektrischen Verbindungen weiterhin einen Steuerbus (36) und ein Netzwerk (34) einschließen, wobei das Verfahren

gekennzeichnet ist durch

die Schritte: a) Speichern (520) eines Wertes für die Hauptuhr in der Steuerung (22); b) Erzeugen eines diskreten Uhrensynchronisations-Unterbrechungssignals (40) in der Steuerung und Verteilen (525) des diskreten Unterbrechungssignals zu dem Betriebsmittel über den Steuerbus (36); c) Empfangen (530) des diskreten Unterbrechungssignals (40) an dem Betriebsmittel und Speichern (540) eines ersten Wertes der Slave-Uhr (42); d) Senden (545) einer Meldung von dem Betriebsmittel zu der Steuerung (22) über das Netzwerk (34), um den Wert anzufordern, der für die Hauptuhr (48) gespeichert ist; e) Senden (560) des Wertes, der für die Hauptuhr gespeichert ist, von der Steuerung (22) zu dem Betriebsmittel über das Netzwerk (34); f) Empfangen (565) des Wertes, der für die Hauptuhr gespeichert ist, an dem Betriebsmittel; g) Speichern (570) eines zweiten Wertes der Slave-Uhr in dem Betriebsmittel; h) Subtrahieren (575) des ersten Wertes von dem zweiten Wert, um einen Slave-Uhr Differenzwert zu bestimmen; und i) Hinzufügen (580) des Differenzwerts zu dem Wert, der für die Hauptuhr gespeichert ist, um einen synchronisierten Wert für die Slave-Uhr zu bestimmen und Setzen der Slave-Uhr auf den synchronisierten Wert.
Das Verfahren gemäß Anspruch 1, wobei das Dokumentenverarbeitungssystem eine Vielzahl an Betriebsmitteln (26, 24, 28, 30, 32) einschließt, wobei jedes Betriebsmittel weiterhin eine Slave-Uhr (42) einschließt, die mit dem betriebsmäßigen Zeitmanagement des Betriebsmittels in Beziehung steht, und die elektrischen Verbindungen weiterhin jedes Betriebsmittel mit der Steuerung (22) über den Steuerbus (36) und das Netzwerk (34) verbinden, wobei die Schritte c) bis i) für jedes Betriebsmittel durchgeführt werden. Ein Dokumentenverarbeitungssystem, umfassend: eine Steuerung (22), wobei die Steuerung weiterhin eine Hauptuhr (48) einschließt, ein Betriebsmittel (26), wobei das Betriebsmittel weiterhin eine Slave-Uhr (42) einschließt, die mit dem betriebsmäßigen Zeitmanagement des Betriebsmittels in Beziehung steht, und elektrische Verbindungen, die das Betriebsmittel (26) mit der Steuerung (22) verbinden, wobei die elektrischen Verbindungen weiterhin einen Steuerbus (36) und ein Netzwerk (34) einschließen, dadurch gekennzeichnet, dass das System weiterhin umfasst: a) Einrichtung zum Speichern eines Wertes für die Hauptuhr in der Steuerung (22); b) Einrichtung zum Erzeugen eines diskreten Uhrensynchronisations-Unterbrechungssignals (40) in der Steuerung (22) und Verteilen des diskreten Unterbrechungssignals (40) zu dem Betriebsmittel über den Steuerbus (36); c) Einrichtung zum Empfangen des diskreten Unterbrechungssignals (40) an dem Betriebsmittel (26) und Speichern eines ersten Wertes der Slave-Uhr, d) Einrichtung zum Senden einer Meldung von dem Betriebsmittel (26) zu der Steuerung (22) über das Netzwerk (34), um den Wert anzufordern, der für die Hauptuhr gespeichert ist; e) Einrichtung zum Senden des Wertes, der für die Hauptuhr gespeichert ist, von der Steuerung (22) zu dem Betriebsmittel (26) über das Netzwerk (34); f) Einrichtung zum Empfangen des Wertes, der für die Hauptuhr gespeichert ist, an dem Betriebsmittel (26); g) Einrichtung zum Speichern eines zweiten Wertes der Slave-Uhr in dem Betriebsmittel (26); h) Einrichtung zum Subtrahieren (575) des ersten Wertes von dem zweiten Wert, um einen Slave-Uhr-Differenzwert zu bestimmen; und i) Einrichtung zum Hinzufügen des Differenzwerts zu dem Wert, der für die Hauptuhr gespeichert ist, um einen synchronisierten Wert für die Slave-Uhr zu bestimmen und Setzen der Slave-Uhr auf den synchronisierten Wert. Das Dokumentenverarbeitungssystem gemäß Anspruch 3, weiterhin einschließend eine Vielzahl von Betriebsmitteln (26, 24, 28, 30, 32), wobei jedes Betriebsmittel weiterhin eine Slave-Uhr (42) einschließt, die mit dem betriebsmäßigen Zeitmanagement des Betriebsmittels in Beziehung steht, und wobei die elektrischen Verbindungen weiterhin jedes Betriebsmittel (26, 24, 28, 30, 32) mit der Steuerung (22) über den Steuerbus (36) und das Netzwerk (34) verbinden. Das Dokumentenverarbeitungssystem gemäß Anspruch 3, wobei das Betriebsmittel eine Betriebsmittelschaltung einschließt, die einen Prozessor (44) einschließt zur Bestimmung der Kompatibilität der Slave-Uhr (42) mit der Hauptuhr (48). Das Dokumentenverarbeitungssystem gemäß Anspruch 5, wobei der Prozessor (44) eingerichtet ist, die Slave-Uhr (42) anzupassen, um die Kompatibilität mit der Steuerung (22) bereitzustellen. Das Dokumentenverarbeitungssystem gemäß Anspruch 6, wobei die Kompatibilität zwischen dem Betriebsmittel (26) und der Steuerung (22) einen harten Realzeitservice bereitstellt. Das Dokumentenverarbeitungssystem gemäß Anspruch 6, wobei die Kompatibilität zwischen dem Betriebsmittel (26) und der Steuerung (22) derart ist, dass die Slave-Uhr (42) innerhalb von einem (1) Uhrenzyklus der Hauptuhr (48) synchronisiert wird. Ein elektrofotografisches Dokumentenverarbeitungssystem, das in einer xerografischen Umgebung betrieben wird, die das Dokumentenverarbeitungssystem gemäß irgendeinem der Ansprüche 3 bis 8 umfasst.
Anspruch[en]
A method of initially synchronizing the slave clock with the master clock in a document processing system comprising a controller (22), the controller further including a master clock (48), a resource (26), the resource further including a slave clock (42) related to operational timing of the resource, and electrical interconnections connecting the resource to the controller, the electrical interconnections further including a control bus (36) and a network (34), the method

characterized by

the steps of: a) saving (520) a value for the master clock in the controller (22); b) generating a discrete clock synchronization interrupt signal (40) in the controller and distributing (525) the discrete interrupt signal to the resource via the control bus (36); c) receiving (530) the discrete interrupt signal (40) at the resource and saving (540) a first value of the slave clock (42); d) sending (545) a message from the resource to the controller (22) via the network (34) to request the value saved for the master clock (48); e) sending (560) the value saved for the master clock from the controller (22) to the resource via the network (34); f) receiving (565) the value saved for the master clock at the resource; g) saving (570) a second value of the slave clock in the resource; h) subtracting (575) the first value from the second value to determine a slave clock difference value; and i) adding (580) the difference value to the value saved for the master clock to determine a synchronized value for the slave clock and setting the slave clock to the synchronized value.
The method of claim 1, the document processing system including a plurality of resources (26, 24, 28, 30, 32), each resource further including a slave clock (42) related to operational timing of the resource, and the electrical interconnections further connecting each resource to the controller (22) via the control bus (36) and the network (34), wherein steps c) through i) are performed for each resource. A document processing system comprising: a controller (22), the controller further including a master clock (48), a resource (26), the resource further including a slave clock (42) related to operational timing of the resource, and electrical interconnections connecting the resource (26) to the controller (22), the electrical interconnections further including a control bus (36) and a network (34), characterized in that the system further comprising: a) means for saving a value for the master clock in the controller (22); b) means for generating a discrete clock synchronization interrupt signal (40) in the controller (22) and distributing the discrete interrupt signal (40) to the resource via the control bus (36); c) means for receiving the discrete interrupt signal (40) at the resource (26) and saving a first value of the slave clock; d) means for sending a message from the resource (26) to the controller (22) via the network (34) to request the value saved for the master clock; e) means for sending the value saved for the master clock from the controller (22) to the resource (26) via the network (34); f) means for receiving the value saved for the master clock at the resource (26); g) means for saving a second value of the slave clock in the resource (26); h) means for subtracting the first value from the second value to determine a slave clock difference value; and i) means for adding the difference value to the value saved for the master clock to determine a synchronized value for the slave clock and setting the slave clock to the synchronized value. The document processing system according to claim 3, further including a plurality of resources (26, 24, 28, 30, 32), each resource further including a slave clock (42) related to operational timing of the resource, and the electrical interconnections further connecting each resource (26, 24, 28, 30, 32), to the controller (22) via the control bus (36) and the network (34). The document processing system of claim 3 wherein the resource includes a resource circuitry including a processor (44) for determining the compatibility of the slave clock (42) with the master clock (48). The document processing system of claim 5 wherein the processor (44) is adapted to adjust the slave clock (42) to provide for compatibility with the controller (22). The document processing system of claim 6 wherein the compatibility between the resource (26) and the controller (22) provides hard real-time service. The document processing system of claim 6 wherein the compatibility between the resource (26) and the controller (22) is such that the slave clock (42) is synchronized to within one (1) clock cycle of the master clock (48). An electrophotographic document processing system, operated in a xerographic environment comprising the document processing system according to anyone of claims 3 to 8.
Anspruch[fr]
Procédé de synchronisation initiale de l'horloge esclave avec l'horloge maîtresse dans un système de traitement de documents comprenant une unité de commande (22), l'unité de commande incluant en plus une horloge maîtresse (48), une ressource (26), la ressource incluant en plus une horloge esclave (42) se rapportant à un minutage opérationnel de la ressource, et des interconnexions électriques connectant la ressource à l'unité de commande, les interconnexions électriques incluant en plus un bus de commande (36) et un réseau (34), le procédé

caractérisé par

les étapes de a) sauvegarder (520) une valeur pour l'horloge maîtresse dans l'unité de commande (22); b) générer un signal d'interruption de synchronisation d'horloge discret (40) dans l'unité de commande et distribuer (525) le signal d'interruption discret à la ressource à travers le bus de commande (36); c) recevoir (530) le signal d'interruption discret (40) à la ressource et sauvegarder (540) une première valeur de l'horloge esclave (42); d) envoyer (545) un message depuis la ressource à l'unité de commande (22) à travers le réseau (34) pour demander la valeur sauvegardée pour l'horloge maîtresse (48); e) envoyer (560) la valeur sauvegardée pour l'horloge maîtresse depuis l'unité de commande (22) à la ressource à travers le réseau (34); f) recevoir (565) la valeur sauvegardée pour l'horloge maîtresse à la ressource; g) sauvegarder (570) une deuxième valeur de l'horloge esclave dans la ressource; h) soustraire (575) la première valeur de la deuxième valeur pour déterminer une valeur de différence de l'horloge esclave; et i) ajouter (580) la valeur de différence à la valeur sauvegardée pour l'horloge maîtresse pour déterminer une valeur synchronisée pour l'horloge esclave et régler l'horloge esclave à la valeur synchronisée.
Procédé de la revendication 1, le système de traitement de documents incluant une pluralité de ressources (26, 24, 28, 30, 32), chaque ressource incluant en plus une horloge esclave (42) se rapportant à un minutage opérationnel de la ressource, et les interconnexion électriques connectant en plus chaque ressource à l'unité de commande (22) à travers le bus de commande (36) et le réseau (34), où les étapes c) à i) sont effectuées pour chaque ressource. Système de traitement de documents comprenant: une unité de commande (22), l'unité de commande incluant en plus une horloge maîtresse (48), une ressource (26), la ressource incluant en plus une horloge esclave (42) se rapportant à un minutage opérationnel de la ressource, et des interconnexions électriques connectant la ressource (26) à l'unité de commande (22), les interconnexions électriques incluant en plus un bus de commande (36) et un réseau (34), caractérisé en ce que le système comprenant en plus a) un moyen pour sauvegarder une valeur pour l'horloge maîtresse dans l'unité de commande (22); b) un moyen pour générer un signal d'interruption de synchronisation d'horloge discret (40) dans l'unité de commande (22) et distribuer le signal d'interruption discret (40) à la ressource à travers le bus de commande (36); c) un moyen pour recevoir le signal d'interruption discret (40) à la ressource (26) et sauvegarder une première valeur de l'horloge esclave; d) un moyen pour envoyer un message depuis la ressource (26) à l'unité de commande (22) à travers le réseau (34) pour demander la valeur sauvegardée pour l'horloge maîtresse; e) un moyen pour envoyer la valeur sauvegardée pour l'horloge maîtresse depuis l'unité de commande (22) à la ressource (26) à travers le réseau (34); f) un moyen pour recevoir la valeur sauvegardée pour l'horloge maîtresse à la ressource (26); g) un moyen pour sauvegarder une deuxième valeur de l'horloge esclave dans la ressource (26); h) un moyen pour soustraire la première valeur de la deuxième valeur pour déterminer une valeur de différence de l'horloge esclave; et i) un moyen pour ajouter la valeur de différence à la valeur sauvegardée pour l'horloge maîtresse pour déterminer une valeur synchronisée pour l'horloge esclave et régler l'horloge esclave à la valeur synchronisée. Système de traitement de documents selon la revendication 3, incluant en plus une pluralité de ressources (26, 24, 28, 30, 32), chaque ressource incluant en plus une horloge esclave (42) se rapportant à un minutage opérationnel de la ressource, et les interconnexions électriques connectant en plus chaque ressource (26, 24, 28, 30, 32), à l'unité de commande (22) à travers le bus de commande (36) et le réseau (34). Système de traitement de documents de la revendication 3 dans lequel la ressource inclut un ensemble de circuits de ressource incluant un processeur (44) pour déterminer la compatibilité de l'horloge esclave (42) avec l'horloge maîtresse (48). Système de traitement de documents de la revendication 5 dans lequel le processeur (44) est adapté pour ajuster l'horloge esclave (42) pour pourvoir à la compatibilité avec l'unité de commande (22). Système de traitement de documents de la revendication 6 dans lequel la compatibilité entre la ressource (26) et l'unité de commande (22) fournit un service temps-réel dur. Système de traitement de documents de la revendication 6 dans lequel la compatibilité entre la ressource (26) et l'unité de commande (22) est telle que l'horloge esclave (42) est synchronisée à l'horloge maîtresse dans un (1) cycle d'horloge de l'horloge maîtresse (48). Système de traitement de documents électro-photographique, exploité dans un environnement xérographique comprenant le système de traitement de documents selon l'une quelconque des revendications 3 à 8.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com