PatentDe  


Dokumentenidentifikation EP1056202 04.10.2007
EP-Veröffentlichungsnummer 0001056202
Titel Verfahren zur Herstellung einer akustischen Oberflächenwellenanordnung
Anmelder Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto, JP
Erfinder Ikada, Katsuhiro, Nagaokakyo-shi, Kyoto-fu 617-8555, JP;
Sakaguchi, Kenji, Nagaokakyo-shi, Kyoto-fu 617-8555, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60036050
Vertragsstaaten DE, FI, FR, GB, SE
Sprache des Dokument EN
EP-Anmeldetag 26.05.2000
EP-Aktenzeichen 004014841
EP-Offenlegungsdatum 29.11.2000
EP date of grant 22.08.2007
Veröffentlichungstag im Patentblatt 04.10.2007
IPC-Hauptklasse H03H 9/145(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H03H 9/02(2006.01)A, L, I, 20051017, B, H, EP   H03H 3/10(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention relates to a surface acoustic wave device having several types of IDTs on a piezoelectric substrate, and a method of producing such a surface acoustic wave device.

Description of the Prior Art

In recent years, to increase the utility of mobile communication devices, research has been done on a multi-band corresponding portable telephone having at least two communication systems. In addition, for portable telephones, a higher transmission frequency has been increasingly used.

Accordingly, with respect to a terminal which can use both of the communication systems for a 800 MHz band cellular phone and an at least 1.5 GHz band cellular phone, it is necessary to provide an RF band-pass filter for each of the two different frequencies.

The reduction of the number of components required for such a terminal, to reduce size and weight, has a limitation. Accordingly, one component having two filter functions is desirable.

For this reason, it has been proposed that several filter functions be provided on one piezoelectric substrate. A surface acoustic wave device has been proposed which has two types of electrodes such as IDTs or other suitable electrodes, having different film-thicknesses formed on one piezoelectric substrate so that the device can operate in two different frequencies.

A method of producing such a surface acoustic wave device has been proposed by Japanese Unexamined Patent Application Publication No. 10-190390 , for example. Hereinafter, the method of producing a surface acoustic wave device will be described with reference to FIGS. 6A to 6E.

First, a conductive film 104a having a predetermined film thickness is formed on a piezoelectric substrate 101. On the piezoelectric substrate 101 having the conductive film 104a, a resist is provided. Next, the resist is exposed using a mask having a shielding portion corresponding to the pattern of the IDT of a first surface acoustic wave element, and then the resist is developed. Accordingly, the exposed portion of the resist is removed. As a result, the unexposed portion 102a of the resist corresponding to the IDT pattern of the first surface acoustic wave element remains.

The conductive film 104a is removed by etching, except for the portion of the conductive film corresponding to the resist 102a. Accordingly, the IDT 111 of the first surface acoustic wave element 110 is produced as shown in FIG. 6B.

Next, a resist is provided on the piezoelectric substrate 101 having the IDT 111 of the first surface acoustic wave element, and exposed using a mask which includes an opening portion corresponding to the IDT of a second surface acoustic wave element, and then the resist is developed whereby the exposed portion of the resist is removed. As a result, the resist 102b having an opening portion corresponding to the IDT of the second surface acoustic wave element is produced, as shown in FIG. 6C.

Next, as shown in FIG. 6D, a conductive film 104b having a smaller film-thickness than that of the IDT 111 of the first surface acoustic wave element 110 is disposed on the piezoelectric substrate 101 having the resist 104b.

Finally, the resist 102b and the conductive film 104b disposed on the resist 102b are removed simultaneously. As shown in FIG. 6E, the IDT 121 of the second surface acoustic wave element 120, having a smaller thickness than the IDT 111 of the first surface acoustic wave element 110, is produced.

According to the above-described production method, the surface acoustic wave elements having different frequency characteristics are produced on the same piezoelectric substrate.

The surface acoustic wave device described above has a problem associated with the manufacturing method thereof Specifically, when the film-thickness and/or the electrode finger width of the IDT deviate from their predetermined ranges so that desired frequency characteristics are not obtained after the formation of the IDT of the second surface acoustic wave element, the surface acoustic wave device is defective even though the previously produced frequency characteristic of the first surface acoustic wave element have been obtained.

That is, the first and second surface acoustic wave elements are formed on the same piezoelectric substrate to define a composite device. Accordingly, if only one of the surface acoustic wave elements has a frequency characteristic that deviates from a desired value, the device is rendered defective. Thus, the defective ratio is considerably higher than the defective ratios arising from surface acoustic wave devices wherein the first and second surface acoustic wave elements are formed on separate piezoelectric substrates.

Further, when a resist pattern is used to produce an IDT, the resist pattern is generally heated to enhance the adhesion thereof to a piezoelectric substrate and plasma-resistance. When this process is applied to the method of producing a surface acoustic wave device in which a plurality of surface acoustic wave elements having different frequency characteristics are included, a problem arises.

More specifically, when the resist pattern used to produce an IDT of a second surface acoustic wave element is heated after formation of a first surface acoustic wave element, a potential difference between the electrode fingers of the IDT in the first surface acoustic wave element is generated due to the pyroelectric properties of the piezoelectric substrate. The potential difference is discharged and pyroelectric breakdown is possible. Even if the discharge is not large enough to cause the pyroelectric breakdown, the discharge could destroy or distort the resist pattern leading to a short-circuit of the IDT of the first surface acoustic wave element during the formation of the IDT of the second surface acoustic wave element.

The applicant's earlier Japanese patent application JP 10-303680 describes a SAW device including first and second SAW elements, in which the film thicknesses of the IDTs in the first and second SAW elements are different from one another.

SUMMARY OF THE INVENTION

To overcome the problems discussed above, the preferred embodiments of the present invention provide a method of producing a surface acoustic wave device in which first and second surface acoustic wave elements are provided on a piezoelectric substrate, the method including the steps of forming an interdigital transducer of the first surface acoustic wave element on the piezoelectric substrate, the interdigital transducer having input-output terminals which are electrically connected by a short-circuiting electrode, providing a resist on the whole surface of the substrate where the interdigital transducer of the first surface acoustic wave element and the short-circuiting electrode are located, and heating the resist, removing the resist only on the area where the second surface acoustic wave element is to be located, forming a conductive film on the piezoelectric substrate, the conductive film having a thickness that is different from a thickness of the interdigital transducer of the first surface acoustic wave element, patterning the conductive film to produce an interdigital transducer of the second surface acoustic wave element, cutting the short-circuiting electrode to electrically disconnect the input-output terminals of the interdigital transducer of the first surface acoustic wave element from the second surface acoustic wave element, forming an insulating film on the interdigital transducers of the first and second surface acoustic wave elements, and decreasing the thickness of the insulating film to adjust frequency characteristics of the first and second surface acoustic wave elements.

Accordingly, the IDT electrode of the first surface acoustic wave element is prevented from being short-circuited after the second surface acoustic wave element is lifted-off. In addition, the defective ratio of the composite element can be reduced by forming an SiO2 film on the first and second surface acoustic wave elements.

The method of another preferred embodiment of the present invention may further include the steps of measuring the frequency characteristics of the first and second surface acoustic wave elements by wafer probing prior to the step of adjusting the frequency, wherein the step of decreasing the thickness of the insulating film is performed so that the thickness of the insulating film in a region of the interdigital transducer of the first surface acoustic wave element is different from the thickness at the region on the interdigital transducer of the second surface acoustic wave element.

Further, the insulating film produced by the insulating film forming step may have a predetermined thickness such that one of the first and second surface acoustic wave elements has desired frequency characteristics, and the step of decreasing the thickness of the insulating film is performed by etching only in the region of the other of the first and second surface acoustic wave elements.

Alternatively, the step of decreasing the thickness of the insulating film may include the steps of decreasing the thickness of the entire insulating film such that one of the first and second surface acoustic wave elements has desired frequency characteristics, measuring frequency characteristics of the other of the first and second surface acoustic wave elements to determine the desired thickness of the insulating film for the other of the first and second surface acoustic wave elements to produce the desired frequency characteristics, and decreasing the thickness of the insulating film only in the region of the other of the first and second surface acoustic wave elements to produce the desired frequency characteristics based on the desired thickness determined by the measuring step.

Accordingly, the frequency characteristics of the first and second surface acoustic wave elements can be effectively adjusted.

Other features, elements, characteristics and advantages of the present invention will become apparent from the detailed description of preferred embodiments of the present invention below with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

  • FIGS. 1A to 1D are schematic plan views showing the process of a surface acoustic wave device according to a first preferred embodiment of the present invention.
  • FIGS. 2 is a schematic plan view showing a surface acoustic wave device according to a second preferred embodiment of the present invention.
  • FIGS. 3A to 3C are schematic cross-sectional views showing a process for the surface acoustic wave device according to the second preferred embodiment of the present invention.
  • FIG. 4 is a characteristic graph showing changes in frequency, caused by the insulating film according to a preferred embodiment of the present invention.
  • FIGS. 5A to 5D are schematic cross-sectional view showing a process for a surface acoustic wave device according to a third preferred embodiment of the present invention.
  • FIGS. 6A to 6E are schematic cross-sectional views showing a process for a conventional surface acoustic wave device.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention will be understood from the following description of the preferred embodiments taken in conjunction with the accompanying drawings.

A method of producing a surface acoustic wave device according to a first preferred embodiment of the present invention will be described with reference to the drawings.

First, a conductive film is formed on the entire upper surface of a piezoelectric substrate. The thickness of the conductive film is preferably substantially equal to that of the IDT of a first surface acoustic wave element, reflectors, or other suitable elements. The conductive film is produced by depositing a conductive material such as A1 or other suitable material using an appropriate method such as vapor depositing, sputtering, plating, or other suitable methods.

Next, a positive resist is formed on the entire surface of the conductive film. The resist is exposed through a mask having a shielding portion corresponding to the IDT of the first surface acoustic wave element, the reflectors, or other suitable elements. Subsequently, the exposed resist portion is removed, whereby the resist is patterned.

Thereafter, etching is performed using an etchant which can remove the conductive film without corroding the resist. Thus, the IDT 11 of a one terminal pair resonator defining a first surface acoustic wave element 10, reflectors 12, input-output terminals 13 and 14, and short-circuiting electrodes 15 are produced. As seen in FIG. 1A, the short-circuiting electrodes 15 are positioned between the input-output terminals 13 and 14 and the reflectors 12. The etching may be wet type or dry type using plasma or other similar substances. Also, the electrodes may be formed by a lift-off method or other suitable methods.

It is noted that the first surface acoustic wave element 10 may be constructed to not include the reflectors 12. In this case, the short-circuiting electrode is positioned only between the input-output terminals 15.

Next, a positive resist is formed on the entire surface of the piezoelectric substrate 1. Thereafter, on the portion of the piezoelectric substrate having the second surface acoustic wave element 20, a mask having an open patterning portion corresponding to the IDT, the reflectors, and other suitable elements is laminated to the resist, and exposed. The exposed resist part is removed, whereby a resist 2 with openings 2X, having a patterned shape is produced as shown in FIG. 1B. As shown in FIG. 1B, on the first surface acoustic wave element 10 portion, the LDT 11, the reflectors 12, the input-output terminals 13 and 14, and the short-circuiting electrodes 15 are protected by the resist 2.

At this stage, the resist 2 is heat-treated to enhance the adhesion and to improve the plasma resistance of the resist. During this heat-treatment, since the input-output terminals 13 and 14 and the reflectors 12 are short-circuited by the short-circuiting electrode 15, respectively, the potential differences in the respective portions are lost, so that the respective portions are at the same potentials. Therefore, no discharge occurs unless the IDT and the resist are broken.

A conductive film is produced with a film-thickness that is preferably substantially equal to that of the IDT of the second surface acoustic wave element. The thickness of the IDT of the second surface acoustic wave element is different from that of the first surface acoustic wave element. Thereafter, the conductive film formed on the resist 2 is removed together with the resist 2. Thereby, the IDT 21 of the second surface acoustic wave element 20, reflectors 22, and input-output terminals 23 and 24 is produced.

As shown in FIG. 1C, a portion of the short-circuiting electrode is cut. For example, the short-circuiting electrode may be cut by photolithography or etching using the resist, or other suitable method.

As shown in FIG. 1D, an insulating film 3 is positioned on the piezoelectric substrate 1. The insulating film 3 is preferably made of SiO2, but can be made of other suitable materials, and is applied using RF magnetron sputtering or via another suitable film application process. To connect an external circuit, the insulating film 3 above the input-output terminals 13 and 14 of the first surface acoustic wave element 10, and the insulating film 3 and the input-output terminals 23 and 24 of the second surface acoustic wave element 20 are removed.

As described above, in this preferred embodiment, the first and second surface acoustic wave elements having different characteristics, which are produced by making the electrode film-thicknesses different, are formed on the piezoelectric substrate. More specifically, the IDT of the first surface acoustic wave element is formed, and simultaneously, the input-output terminals for the IDT and the reflectors are connected, respectively, by the short-circuiting electrodes. After the IDT of the second surface acoustic wave element is formed, the short-circuiting wire is cut. Therefore, the IDT of the first surface acoustic wave is prevented from being short-circuited during the formation of the second surface acoustic wave element. In addition, the frequency can be adjusted by applying the insulating SiO2 film on the first and second surface acoustic wave elements. Accordingly, the number of defective composite surface acoustic wave devices is minimized.

A surface acoustic wave device according to a second preferred embodiment of the present invention and a method of producing the surface acoustic wave device of this preferred embodiment will be described with reference to the drawings. Similar portions to those of the first preferred embodiment are designated by the same reference numerals, and the detailed description is omitted to avoid repetition.

FIG. 2 shows the configuration of first and second surface acoustic wave elements 30 and 40 and wafer probing positions. The first surface acoustic wave element 30 is a ladder type filter including series arm resonators 31 and 32, and parallel arm resonators 33, 34, and 35. Similarly, the second surface acoustic wave element 40 is a ladder type filter including series arm resonators 41 and 42, and parallel arm resonators 43, 44, and 45.

An insulating film 3 preferably made of SiO2 is applied to the first surface acoustic wave element 30 and the second surface acoustic wave element 40, except in the regions of the input-output terminals 36 to 38 of the first surface acoustic wave element 30 and the input-output terminals 46 to 48 of the second surface acoustic wave element 40. Further, the film-thicknesses of the insulating film 3 on the first surface acoustic wave element 30 and on the second surface acoustic wave element 40 differ, resulting in the formation of a step 3X.

As shown in FIG. 2, probes 50 are connected to the input-output terminals 36 to 38 of the first surface acoustic wave element 30 and the input-output terminals 46 to 48 of the second surface acoustic wave element 40 to perform wafer-probing.

FIG. 3A is a schematic cross-sectional view showing the state in which the insulating film 3 is evenly formed. The frequency characteristic of the first surface acoustic wave element 30 is adjusted to achieve a desired value. Further, the frequency characteristic of the second surface acoustic wave element 40 is higher than a desired frequency before the insulating film 3 is applied, and is lower than the desired frequency in the state of FIG. 3A.

The frequency characteristic of the second surface acoustic wave element is measured by probe 50 via wafer probing. The adjustment amount of the frequency characteristic is determined based on the measurements of the probe. In the following process, the frequency characteristic of the second surface acoustic wave element is adjusted, and the step 3X of the insulating film shown in FIG. 2 is formed.

The process of adjusting the frequency characteristic of the second surface acoustic wave element will be described with reference to FIG. 3.

First, a positive resist is formed on the whole surface of the insulating film 3. The resist is exposed through a mask having a shielding portion corresponding to the first surface acoustic wave element 30. Thereafter, the exposed resist portion is removed. As a result, the patterned resist 2a shown in FIG. 3B is produced.

Thereafter, etching is performed using an etchant that is capable of removing the insulating film 3, while not corroding the resist 2a. Whereby a step 3X is produced on the insulating film 3 as shown in FIG. 3C. The etching may be wet type or dry type using plasma or other suitable methods.

FIG. 4 shows the changes in frequency characteristic of the second surface acoustic wave element 40. In FIG. 4, the solid line represents the characteristic of the element 40 having no insulating film, the broken line represents the characteristic of the element 40 with an approximately 29nm insulating film applied, and the dashed line represents the characteristic of the element 40 where plasma etching is performed to reduce the insulating thickness to about 13nm. As seen in FIG. 4, the frequency characteristic is adjusted by etching the thickness of the insulating film made of SiO2.

As described above, according to this preferred embodiment, the number of defective composite elements is minimized by forming the SiO2 film on the first and second surface acoustic wave elements. Specifically, the different frequencies of the two surface acoustic wave elements can be effectively adjusted by forming SiO2 films of different thicknesses on the first and second surface acoustic wave elements. Thus, the number of defective composite elements is greatly reduced.

A method of producing a surface acoustic wave device according to a third preferred embodiment of the present invention will be described. Similar portions to those of the above-described first and second preferred embodiments are designated by the same reference numerals, and the detailed description is omitted to avoid repetition.

This preferred embodiment provides a method in which the film-thicknesses of the insulating film on the first and second surface acoustic wave elements are made different from each other.

FIG. 5A shows the insulating film 3 similar to FIG. 3A except the frequency of the first surface acoustic wave element is lower than the desired value. That is, the film-thickness of the insulating film 3 of FIG. 5A is thicker than the insulating film 3 shown in FIG. 3A.

After the above-described insulating film 3 is applied, the frequency characteristic of the first surface acoustic wave element 30 is measured by wafer probing. The adjustment amount of the frequency characteristic is determined based on the measurement results.

Further, as shown in FIG. 5B, the surface of the insulating film 3 is plasma-etched so that the frequency of the first surface acoustic wave element 30 has a desired value. The thickness of the insulating film 3 is set at a predetermined value so that the frequency characteristic of the first surface acoustic wave element 30 has this desired value.

Thereafter, the frequency characteristic of the second surface acoustic wave element 40 is measured by wafer probing, and the adjustment amount of the frequency characteristic is determined based on the measurement results.

A positive resist is applied to the whole surface of the insulating film 3 shown in FIG. 5B. The resist is exposed through a mask having a shielding portion corresponding to the first surface acoustic wave element 30. Then, the exposed resist part is removed to obtain a patterned resist 2a shown in FIG. 5C.

Next, etching is performed using an etchant which is capable of removing the insulating film 3 but not the resist 2a, and subsequently, a step 3x is produced on the insulating film 3 as shown in FIG. 5D. The etching may be of wet type or dry type using plasma or other suitable methods.

In this preferred embodiment, the number of defective composite elements is minimized by applying the SiO2 film on the first and second surface acoustic wave elements. Since the SiO2 film formed on the second surface acoustic wave element is adjusted after the SiO2 film formed on the first surface acoustic wave element is adjusted, the frequencies of the two surface acoustic wave elements are effectively adjusted. The number of defective composite elements is minimized.

The technique in which the insulating films formed on the first and second surface acoustic wave elements are made different from each other so that the frequencies of the two different surface acoustic wave elements are effectively adjusted, as described in the second and third preferred embodiments, can be used for the one terminal pair resonator described in the first preferred embodiment. Particularly, the techniques described in the first to third preferred embodiments of the present invention can be applied to any suitable device, such as a resonator, a filter, a duplexer or other electronic component. The techniques can also be applied to surface acoustic wave elements having no reflectors.

In the above-described respective preferred embodiments, the thickness of the conductive film of the second surface acoustic wave element is preferably less than that of the conductive film of the first surface acoustic wave element. Conversely, the thickness of the conductive film of the second surface acoustic wave element may be greater than that of the conductive film of the first surface acoustic wave element.

The piezoelectric substrate in the respective preferred embodiments can be any suitable piezoelectric single crystals such as quartz, lithium tetraborate, and langasite, and any suitable piezoelectric ceramics such as lead titanate zirconate-type piezoelectric ceramic. Further, piezoelectric substrates having piezoelectric thin films made of ZnO or other suitable thin films, formed on insulation substrates made of alumina or other suitable insulation substrates may be used. As electrode material for the IDT, the reflectors, and other elements, any of A1, A1 alloys, and other conductive materials can be applied for the present invention. Moreover, the insulating film for adjusting the frequency characteristic is not limited to SiO2.

While preferred embodiments of the invention have been disclosed, various modes of carrying out the principles disclosed herein are contemplated as being within the scope of the following claims. Therefore, it is understood that the scope of the invention is not to be limited except as otherwise set forth in the claims.


Anspruch[de]
Ein Verfahren zum Herstellen einer Oberflächenwellenvorrichtung, die ein erstes und ein zweites Oberflächenwellenelement (10, 20) aufweist, die auf einem piezoelektrischen Substrat 1) bereitgestellt sind, wobei das Verfahren die folgenden Schritte aufweist: Bilden eines Interdigitalwandlers (11) des ersten Oberflächenwellenelements (10) auf dem piezoelektrischen Substrat, wobei der Interdigitalwandler (11) Eingang-Ausgang-Anschlüsse aufweist, die über eine Kurzschlusselektrode (15) elektrisch verbunden sind; Bereitstellen eines Resists (2) auf der gesamten Oberfläche des Substrats (1), wo der Interdigitalwandler (11) des ersten Oberflächenwellenelements (10) und die Kurzschlusselektrode (15) gebildet sind; Erwärmen des Resists (2); Entfernen des Resists nur von dem Bereich, in dem das zweite Oberflächenwellenelement (20) gebildet werden soll; Aufbringen eines leitfähigen Films auf das piezoelektrische Substrat (1), wobei der leitfähige Film eine Dicke aufweist, die sich von einer Dicke des Interdigitalwandlers (11) des ersten Oberflächenwellenelements (10) unterscheidet; Strukturieren des leitfähigen Films, um einen Interdigitalwandler (21) des zweiten Oberflächenwellenelements (20) zu bilden; Abschneiden der Kurzschlusselektrode (15), um die Eingang-Ausgang-Anschlüsse des Interdigitalwandlers (11) des ersten Oberflächenwellenelements (10) elektrisch abzutrennen; Bilden eines isolierenden Films (3) auf den Interdigitalwandlern (11, 21) des ersten und des zweiten Oberflächenwellenelements (10, 20); und Verringern der Dicke des isolierenden Films (3), um Frequenzcharakteristika von zumindest einem des ersten und des zweiten Oberflächenwellenelements (10, 20) einzustellen. Ein Verfahren zum Herstellen einer Oberflächenwellenvorrichtung gemäß Anspruch 1, das ferner den Schritt eines Messens der Frequenzcharakteristika des ersten und des zweiten Oberflächenwellenelements (10, 20) durch ein Wafersondieren vor dem Schritt des Einstellens der Frequenzcharakteristika aufweist;

wobei der Schritt des Verringerns der Dicke des isolierenden Films (3) so durchgeführt wird, dass die Dicke des isolierenden Films bei einer Region an dem Interdigitalwandler (11) des ersten Oberflächenwellenelements (10) sich nach dem Schritt des Bildens des isolierenden Films (3) von der Dicke des isolierenden Films bei einer Region an dem Interdigitalwandler (21) des zweiten Oberflächenwellenelements (20) unterscheidet.
Ein Verfahren zum Herstellen einer Oberflächenwellenvorrichtung gemäß Anspruch 2, bei dem der Schritt des Verringerns der Dicke des isolierenden Films (3) die Schritte eines Verringerns der Dicke des gesamten isolierenden Films, derart, dass eines (30) des ersten und des zweiten Oberflächenwellenelements (30, 40) eine erwünschte Frequenzcharakteristik aufweist, eines Messens von Frequenzcharakteristika des anderen (40) des ersten und des zweiten Oberflächenwellenelements, um die erwünschte Dicke des isolierenden Films (3) für das andere (40) des ersten und des zweiten Oberflächenwellenelements zu bestimmen, um erwünschte Frequenzcharakteristika zu erzielen, und eines Verringerns der Dicke des isolierenden Films (3) nur an einer Region des anderen (40) des ersten und des zweiten Oberflächenwellenelements umfasst, um eine erwünschte Frequenzcharakteristik auf der Basis der erwünschten Dicke aufzuweisen, die durch den Messschritt bestimmt wird. Ein Verfahren zum Herstellen einer Oberflächenwellenvorrichtung gemäß Anspruch 2, bei dem bei dem Schritt des Bildens des Interdigitalwandlers des ersten Oberflächenwellenelements (30) und dem Schritt des Bildens des Interdigitalwandlers des zweiten Oberflächenwellenelements (40) die Interdigitalwandler so gebildet werden, dass die Frequenz jedes des ersten Oberflächenwellenelements (30) und des zweiten Oberflächenwellenelements (40) höher ist als eine vorbestimmte Frequenz; und bei dem Schritt des Bildens des isolierenden Films (3) der isolierende Film (3) so gebildet wird, dass die Frequenz jedes des ersten Oberflächenwellenelements (30) und des zweiten Oberflächenwellenelements (40) niedriger wird als die vorbestimmte Frequenz; wobei das Verfahren ferner den Schritt eines gleichzeitigen Ätzens des isolierenden Films (3) bei der Region an dem ersten Oberflächenwellenelement (30) und des isolierenden Films (3) bei der Region an dem zweiten Oberflächenwellenelement (40) aufweist, so dass die Frequenz von einem (30) des ersten und des zweiten Oberflächenwellenelements (30, 40) auf einen erwünschten Wert erhöht wird; wobei die Frequenz des anderen (40) des ersten und des zweiten Oberflächenwellenelements (30, 40) durch ein Wafersondieren gemessen wird und lediglich der isolierende Film (3) bei der Region an dem anderen (40) des ersten und des zweiten Oberflächenwellenelements (30, 40) plasmageätzt wird, so dass die Frequenz des anderen des ersten und des zweiten Oberflächenwellenelements auf einen erwünschten Wert erhöht wird.
Anspruch[en]
A method of producing a surface acoustic wave device having first and second surface acoustic wave elements (10,20) provided on a piezoelectric substrate (1), comprising the steps of: forming an interdigital transducer (11) of the first surface acoustic wave element (10) on the piezoelectric substrate, the interdigital transducer (11) having input-output terminals electrically connected via a short-circuiting electrode (15); providing a resist (2) on the whole surface of the substrate (1) where the interdigital transducer (11) of the first surface acoustic wave element (10) and the short-circuiting electrode (15) are formed; heating the resist (2); removing the resist only from the area where the second surface acoustic wave element (20) is to be formed; applying a conductive film to the piezoelectric substrate (1), the conductive film having a thickness that is different from a thickness of the interdigital transducer (11) of the first surface acoustic wave element (10); patterning the conductive film to form an interdigital transducer (21) of the second surface acoustic wave element (20); cutting the short-circuiting electrode (15) to electrically disconnect the input-output terminals of the interdigital transducer (11) of the first surface acoustic wave element (10); forming an insulating film (3) on the interdigital transducers (11,21) of the first and second surface acoustic wave elements (10,20); and decreasing the thickness of the insulating film (3) to adjust frequency characteristics of at least one of the first and second surface acoustic wave elements (10,20). A method of producing a surface acoustic wave device according to Claim 1, further comprising the step of measuring the frequency characteristics of the first and second surface acoustic wave elements (10,20) by wafer probing prior to the step of adjusting the frequency characteristics;

wherein the step of decreasing the thickness of the insulating film (3) is performed so that the thickness of the insulating film at a region on the interdigital transducer (11) of the first surface acoustic wave element (10) is different from the thickness of the insulating film at a region on the interdigital transducer (21) of the second surface acoustic wave element (20), after the step of forming the insulating film (3).
A method of producing a surface acoustic wave device according to Claim 2, wherein the step of decreasing the thickness of the insulating film (3) includes the steps of decreasing the thickness of the entire insulating film such that one (30) of the first and second surface acoustic wave elements (30,40) has a desired frequency characteristic, measuring frequency characteristics of the other (40) of the first and second surface acoustic wave elements to determine the desired thickness of the insulating film (3) for the other (40) of the first and second surface acoustic wave elements to achieve desired frequency characteristics, and decreasing the thickness of the insulating film (3) only on a region of the other (40) of the first and second surface acoustic wave elements to have a desired frequency characteristic based on the desired thickness determined by the measuring step. A method of producing a surface acoustic wave device according to Claim 2, wherein, in the step of forming the interdigital transducer of the first surface acoustic wave element (30) and the step of forming the interdigital transducer of the second surface acoustic wave element (40), the interdigital transducers are formed so that the frequency of each of the first surface acoustic wave element (30) and the second surface acoustic wave element (40) is higher than a predetermined frequency; and in the step of forming the insulating film (3), the insulating film (3) is formed so that the frequency of each of the first surface acoustic wave element (30) and the second surface acoustic wave element (40) becomes lower than the predetermined frequency; the method further comprising the step of etching the insulating film (3) at the region on the first surface acoustic wave element (30) and the insulating film (3) at the region on the second surface acoustic wave element (40) simultaneously so that the frequency of one (30) of the first and second surface acoustic wave elements (30,40) is increased to a desired value; the frequency of the other (40) of the first and second surface acoustic wave elements (30,40) is measured by wafer probing, and only the insulating film (3) at the region on the other (40) of the first and second surface acoustic wave elements (30,40) is plasma-etched so that the frequency of the other of the first and second surface acoustic wave elements is increased to a desired value.
Anspruch[fr]
Procédé de production d'un dispositif à ondes acoustiques de surface comportant des premier et second éléments à ondes acoustiques de surface (10, 20) disposés sur un substrat piézoélectrique (1), comprenant les étapes consistant à : former un transducteur interdigité (11) du premier élément à ondes acoustiques de surface (10) sur le substrat piézoélectrique, le transducteur interdigité (11) comportant des bornes d'entrée-sortie électriquement reliées via une électrode de court-circuit (15) ; disposer un résist (2) sur toute la surface du substrat (1) où le transducteur interdigité (11) du premier élément à ondes acoustiques de surface (10) et l'électrode de court-circuit (15) sont formés ; chauffer le résist (2) ; retirer le résist seulement de la zone où le second élément à ondes acoustiques de surface (20) sera formé ; appliquer un film conducteur sur le substrat piézoélectrique (1), le film conducteur ayant une épaisseur qui est différente d'une épaisseur du transducteur interdigité (11) du premier élément à ondes acoustiques de surface (10) ; modeler le film conducteur pour former un transducteur interdigité (21) du second élément à ondes acoustiques de surface (20) ; couper l'électrode de court-circuit (15) pour déconnecter électriquement les bornes d'entrée-sortie du transducteur interdigité (11) du premier élément à ondes acoustiques de surface (10) ; former un film isolant (3) sur les transducteurs interdigités (11, 21) des premier et second éléments à ondes acoustiques de surface (10, 20) ; et diminuer l'épaisseur du film isolant (3) pour ajuster les caractéristiques de fréquence d'au moins un élément parmi les premier et second éléments à ondes acoustiques de surface (10, 20). Procédé de production d'un dispositif à ondes acoustiques de surface selon la revendication 1, comprenant en outre l'étape consistant à mesurer les caractéristiques de fréquence des premier et second éléments à ondes acoustiques de surface (10, 20) par sondage de plaquette avant l'étape consistant à ajuster les caractéristiques de fréquence ;

dans lequel l'étape consistant à diminuer l'épaisseur du film isolant (3) est effectuée de sorte que l'épaisseur du film isolant au niveau d'une région sur le transducteur interdigité (11) du premier élément à ondes acoustiques de surface (10) soit différente de l'épaisseur du film isolant au niveau d'une région sur le transducteur interdigité (21) du second élément à ondes acoustiques de surface (20), après l'étape consistant à former le film isolant (3).
Procédé de production d'un dispositif à ondes acoustiques de surface selon la revendication 2, dans lequel l'étape consistant à diminuer l'épaisseur du film isolant (3) comprend les étapes consistant à diminuer l'épaisseur de tout le film isolant de sorte qu'un (30) des premier et second éléments à ondes acoustiques de surface (30, 40) ait une caractéristique de fréquence souhaitée, mesurer les caractéristiques de fréquence de l'autre (40) des premier et second éléments à ondes acoustiques de surface pour déterminer l'épaisseur souhaitée du film isolant (3) pour l'autre (40) des premier et second éléments à ondes acoustiques de surface afin d'obtenir les caractéristiques de fréquence souhaitées, et diminuer l'épaisseur du film isolant (3) seulement sur une région de l'autre (40) des premier et second éléments à ondes acoustiques de surface pour avoir une caractéristique de fréquence souhaitée sur la base de l'épaisseur souhaitée déterminée par l'étape de mesure. Procédé de production d'un dispositif à ondes acoustiques de surface selon la revendication 2, dans lequel, dans l'étape consistant à former le transducteur interdigité du premier élément à ondes acoustiques de surface (30) et l'étape consistant à former le transducteur interdigité du second élément à ondes acoustiques de surface (40), les transducteurs interdigités sont formés de sorte que la fréquence de chaque élément parmi le premier élément à ondes acoustiques de surface (30) et le second élément à ondes acoustiques de surface (40) est supérieure à une fréquence prédéterminée ; et dans l'étape consistant à former le film isolant (3), le film isolant (3) est formé de sorte que la fréquence de chaque élément parmi le premier élément à ondes acoustiques de surface (30) et le second élément à ondes acoustiques de surface (40) devienne inférieure à la fréquence prédéterminée ; le procédé comprenant en outre l'étape consistant à graver le film isolant (3) au niveau de la région sur le premier élément à ondes acoustiques de surface (30) et le film isolant (3) au niveau de la région sur le second élément à ondes acoustiques de surface (40) simultanément de sorte que la fréquence d'un (30) des premier et second éléments à ondes acoustiques de surface (30, 40) augmente à une valeur souhaitée ; la fréquence de l'autre (40) des premier et second éléments à ondes acoustiques de surface (30, 40) est mesurée par sondage de plaquette, et seul le film isolant (3) au niveau de la région sur l'autre (40) des premier et second éléments à ondes acoustiques de surface (30, 40) est gravé par plasma de sorte que la fréquence de l'autre des premier et second éléments à ondes acoustiques de surface augmente à une valeur souhaitée.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com