PatentDe  


Dokumentenidentifikation EP1421419 25.10.2007
EP-Veröffentlichungsnummer 0001421419
Titel OPTISCHE FASER
Anmelder OCG Technology Licensing, LLC, Columbia, Md., US
Erfinder PO, Hong, Sherborn, MA 01770, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60222440
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 10.07.2002
EP-Aktenzeichen 027591247
WO-Anmeldetag 10.07.2002
PCT-Aktenzeichen PCT/US02/21803
WO-Veröffentlichungsnummer 2003010578
WO-Veröffentlichungsdatum 06.02.2003
EP-Offenlegungsdatum 26.05.2004
EP date of grant 12.09.2007
Veröffentlichungstag im Patentblatt 25.10.2007
IPC-Hauptklasse G02B 6/036(2006.01)A, F, I, 20070227, B, H, EP
IPC-Nebenklasse H01S 3/067(2006.01)A, L, I, 20070227, B, H, EP   

Beschreibung[en]

This invention relates to optical fibers and systems containing optical fibers.

Optical fibers can be used to transport and/or enhance signals at certain wavelengths. For example, pump energy at a wavelength &lgr;p can be emitted by an energy source, such as a laser, and coupled into an optical fiber having a core containing an active material that interacts with the pump energy, and undergoes certain electronic transitions to form energy at a different wavelength &lgr;out. The optical fiber can include, for example, a pair of reflectors that form a lasing cavity at the wavelength &lgr;out so that the optical fiber can be used as a laser that converts energy at &lgr;p to energy at &lgr;out.

EP-A-0162303 describes a polarization locked optical fiber having a fiber core suspended by a thin cladding web within a tube with a pre-stress acting along the web to fixedly polarize the core.

GB-A-2189900 describes an optical fibre device including a longitudinally arranged optical interaction region made by constructing a cladding preform, cutting a sector from a curved side of the preform to form an optical interaction surface, polishing the surface, enclosing the curved side of the preform and the space left by the cutout sector in a glass tube, heating the resulting combination and pulling a fibre from the preform, and filling a predetermined length of the resulting hole in the fibre with a suitable substance to form an optical interaction region. The polished interaction region allows a good access to be made to an evanescent field portion of a transmitted signal which can be present in the cladding body surrounding the fibre core.

US-A-5627921 discloses an optical fiber intended to be used as a sensor and which is of the kind suitable for communication. The optical fiber has a longitudinal cavity or hole which is located in cladding. The cavity is filled with a material which changes its volume depending on physical quantities in the fiber environment.

The present invention seeks to provide an improved optical fiber.

According to a first aspect of the present invention there is provided an optical fiber comprising a core comprising an index of refraction and active material, a cladding surrounding the core for propagating pump energy along the fiber for intersection with the core, the cladding comprising a first index of refraction that is less than the index of refraction of the core, a layer surrounding and contacting the cladding, the layer comprising a second index of refraction that is different than the first index of refraction, a region between the layer and the cladding, the region comprising a third index of refraction that is different than the first and second indices of refraction, wherein the cladding comprises a straight side, the layer and the straight side defining the region, or wherein the cladding includes a side partially defining the region, the side including a curved portion.

The optical fiber may comprise another layer surrounding the layer, the another layer comprising a fourth index of refraction that is less than the second index of refraction of the layer. The layer may comprise a silica material.

The cladding may include a side partially defining the region, the side including at least a portion that is one of convex and concave.

According to a second aspect of the present invention there is provided an optical fiber comprising a core having an index of refraction, a cladding surrounding the core and having a first index of refraction that is less than the index of refraction, a layer surrounding the cladding and having a second index of refraction, the cladding including first and second adjacent sides forming a vertex that is fused to the layer; and wherein the first side of the cladding partially defines a first region that is between the cladding and the layer and the second side of the cladding partially defines a different region that is between the cladding and the layer each of the regions comprising an index of refraction that is different than the first index of refraction. At least one of the sides may include a portion that is curved. The cladding may comprise a substantially square cross section. The layer may have an inner surface and the cladding occupies at least about 60% of the area inside the inner surface of the layer.

A cross section of the cladding may be shaped as a convex polygon. The convex polygon may have eight sides. The region or at least one of the regions may have a D-shaped cross section. The region or at least one of the regions may comprise a void. The void may be evacuated or contain a gas. The region or at least one of the regions may contain a solid material.

The layer may comprise said second index of refraction that is less than the first index of refraction. The layer may comprise said second index of refraction that is greater than the first index of refraction of the cladding.

The layer may have an inner surface partially defining together with an outer surface of the cladding the region, the first region or said different region, the region, the first region or said different region comprising an index of refraction that is different than the first index of refraction and the cladding may occupy at least about 60% of the area inside the inner surface of the layer. The cladding may occupy at least about 70% of the area inside the inner surface of the layer, at least about 80% of the area inside the inner surface of the layer or at least about 90% of the area inside the inner surface of the layer

The layer may have an inner surface having a circular cross section. The core may comprise rare earth ions. The rare earth ions may include ytterbium ions.

According to a third aspect of the present invention there is provided a system comprising an energy source and an optical fiber, wherein the energy source is configured so that energy output by the energy source at the pump wavelength can be coupled into the optical fiber.

The energy source may comprise a laser.

  • Figs. 1A and 1B are cross-sectional views of an embodiment of an optical fiber;
  • Fig. 2 is a schematic representation of an embodiment of a fiber laser system;
  • Figs. 3A-3D show an embodiment of making an embodiment of an optical fiber;
  • Figs. 4A-4D show cross-sectional views of embodiments of optical fibers;
  • Fig. 5 is a cross-sectional view of an embodiment of an optical fiber;
  • Fig. 6 is a cross-sectional view of an embodiment of an optical fiber; and
  • Fig. 7 is schematic representation of a fiber laser system.

Features, objects and advantages of the invention are in the description, drawings and claims.

DETAILED DESCRIPTION

Figs. 1A and 1B are cross-sectional views of an optical fiber 100 of the invention. Optical fiber 100 has a core 110 (e.g., a single mode core), a cladding 120, and an exterior layer 140 that surrounds and contacts cladding 120. Cladding 120 has sides 160a, 160b, 160c and 160d that form vertices 150a, 150b, 150c, and 150d. Vertices 150a-150d are fused to an inner surface 170 of layer 170. Optical fiber 100 additionally includes regions 130a, 130b, 130c, and 130d between portions of cladding 120 and layer 140.

Generally, core 110 is provided to enhance pump energy absorption (e.g., to produce gain) by interacting with pump energy and/or to guide energy at a desired wavelength (&lgr;out). In certain embodiments, core 110 includes a first material (e.g., a silica material, such as fused silica) and at least one dopant (e.g., at least one rare earth ion, such as erbium ions, ytterbium ions, neodymium ions, holmium ions, dysprosium ions, and/or thulium ions, and/or at least one transition metal ion). In some embodiments, core 110 is formed of fused silica doped with ytterbium ions.

Core 110 can optionally include certain other materials. For example, core 110 can include one or more materials to increase its index of refraction (e.g., germanium oxide) or to decrease its index of refraction (e.g., boron oxide). As another example, core 110 can include one or more materials (e.g., aluminum oxide) that can enhance the solubility of the rare earth ion(s) within core 110 (e.g., within silica, such as fused silica). As a further example, core 110 can include one or more materials (e.g., phosphorus pentoxide) that enhance the homogeneity of the index of refraction within core 110. Combinations of such materials can be used. In certain embodiments, core 110 can contain fluorine. Without wishing to be bound by theory, it is believed that fluorine present in core 110 can effect the viscosity of core 110 (e.g., at elevated temperature). It is believed that fluorine in core 110 can result in core 110 having enhanced homogeneity.

In general, cladding 120 is used to substantially confine the pump energy at wavelength &lgr;P so that the pump energy propagates along fiber 100 and can interact with core 110. Cladding 120 is typically formed from a material having a lower refractive index than core 110. In some embodiments, core 110 has a refractive index (n110) and cladding 120 has a refractive index (n120) so that ((n110)2- (n120)2)1/2 is less than about 0.2 (e.g., less than about 0.17) and greater than about 0.05 (e.g., greater than about 0.12), such as about from 0.12 to 0.17. Examples of materials from which cladding 120 can be formed include silica materials, such as fused silica materials.

Cladding 120 has a substantially square cross-section, including four substantially flat (e.g., optically flat) sides 160a, 160b, 160c, and 160d. The angle subtended by adjacent sides 160a and 160b, 160b and 160c, 160c and 160d, and 160d and 160a is approximately 90°. Adjacent sides 160a and 160b meet at vertex 150a, adjacent sides 160b and 160c meet at vertex 150b, adjacent sides 160c and 160d meet at vertex 150c, and adjacent sides 160d and 160a meet at vertex 150d. Vertices 150a, 150b, 150c, and 150d are fused to layer 140.

Inner surface 170 of layer 140 partially defines regions 130a, 130b, 130c, and 130d, and can serve as a protective layer for cladding 120. Layer 140 can also provide an outermost surface of fiber 100 for the subsequent coating of additional layers (e.g., layers providing mechanical strength, chemical protection and/or physical protection). Generally, the refractive index of layer 140 can vary as desired (e.g., the refractive index of layer 140 can be about the same as the refractive index of cladding 120, the refractive index of layer 140 can be greater than the refractive index of cladding 120, the refractive index of layer 140 can be less than the refractive index of cladding 120). Examples of materials from which layer 140 can be formed include silica materials, such as fused silica materials. Materials from which layer 140 can be formed can be, for exampie, fluorinated or nonfluorinated.

Regions 130a, 130b, 130c, and 130d provide an optical interface at cladding sides 160a, 160b, 160c, and 160d so that, when regions 130a-130d have a lower index of refraction than cladding 120, regions 130a-130d can substantially confine pump energy inside cladding 120. In some embodiments, regions 130a-130d are substantially evacuated. In certain embodiments, regions 130a-130d contain a gas (e.g., air, nitrogen, argon), a liquid (e.g., one or more low refractive index oils) and/or a solid (e.g., one or more polymers). The refractive index of each region may be the same as or different than each other region.

In some embodiments, the maximum dimension of one or more of regions 130a-130d between cladding 120 and inner surface 170, is about the same as or greater than the wavelength of the pump energy (&lgr;p) (e.g., about the same as the wavelength of the pump energy, at least about twice the wavelength of the pump energy, at least about three times the wavelength of the pump energy, at least about four times the wavelength of the pump energy, at least about five times the wavelength of the pump energy, at least about six times the wavelength of the pump energy, at least about seven times the wavelength of the pump energy, at least about eight times the wavelength of the pump energy, at least about nine times the wavelength of the pump energy, at least about 10 times the wavelength of the pump energy, at least about 20 times the wavelength of the pump energy, at least about 50 times the wavelength of the pump energy, at least about 75 times the wavelength of the pump energy, at least about 100 times the wavelength of the pump energy).

In certain embodiments, the maximum dimension of one or more of regions 130a-130d between cladding 120 and inner surface 170, is at least 0.8 micrometer (e.g., at least about one micrometer, at least two micrometers, at least three micrometers, at least about four micrometers, at least about five micrometers, at least about six micrometers, at least about seven micrometers, at least about eight micrometers, at least about nine micrometers, at least about 10 micrometers, at least about 20 micrometers, at least about 35 micrometers, at least about 50 micrometers, at least about 60 micrometers, at least about 75 micrometers).

In certain embodiments, regions 130a, 130b, 130c, and 130d are of sufficient dimension such that substantially no energy propagating in cladding 120 that is incident on sides 160a, 160b, 160c, or 160d is coupled into layer 140.

In some embodiments, pump energy can be efficiently coupled into cladding 120 (e.g., by end-coupling). The numerical aperture of a fiber describes the pump energy gathering efficiency of a fiber, and for fiber 100 the numerical aperture (NA) is given approximately by: NA = n 120 2 - n 130 2 ,

where n120 is the index of refraction of cladding 120 and n130 is the effective index of regions 130a, 130b, 130c, and 130d surrounding cladding 120. In some embodiments, fiber 100 can have a high numerical aperture (e.g., at least about 0.25, at least about 0.3, at least about 0.35, at least about 0.4, at least about 0.5, at least about 0.6, at least about 0.7, at least about 0.8, at least about 0.9, about one).

Fig. 2 shows a fiber laser system 200 including fiber 100 and a pump source 220 (e.g., a laser, such as a semiconductor diode laser). Pump source 220 emits energy at wavelength &lgr;p and is configured so that this energy can be coupled into fiber 100 (e.g., by end-pumping or side-pumping). In addition to core 110, cladding 120, regions 130a-130d, and layer 140, fiber 100 includes reflectors 230, 240 and 250 (e.g., Bragg gratings). Reflector 230 is configured to reflect substantially all (e.g., about 100%) of the energy impinging thereon at wavelength &lgr;p. Reflector 240 is configured to reflect substantially all (e.g., about 100%) energy impinging thereon at wavelength &lgr;out, and reflector 250 is configured to reflect a portion (e.g., at least 98%, at least 95%, at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40%, at least 30%, at least 20%, at least 10%, at least 5%) of the energy impinging thereon at wavelength &lgr;out so that reflectors 240 and 250 form a resonance cavity 260 for energy at wavelength &lgr;out.

During operation of system 200, pump energy at wavelength &lgr;p is emitted by source 220, coupled into fiber 100 and propagates in fiber 100. As the pump energy propagates along fiber 100, it is substantially confined within the volume of fiber 100 defined by cladding 120. A portion of the pump energy within cladding 120 intersects core 110, and a portion of the pump energy intersecting core 110 interacts with the active material in core 110 to form energy at wavelength &lgr;out (e.g., via electronic transitions in the active material contained in core 110, such as three-level lasing or four-level lasing).

&lgr;out is generally different from &lgr;p. Examples of &lgr;out include about 1080 nanometers and about 1100 nanometers. Examples of &lgr;P include about 915 nanometers and about 975 nanometers.

Energy having wavelength &lgr;out that is formed in cavity 260 may experience gain (e.g., by stimulated emission) and grow in intensity. A portion of the energy at wavelength &lgr;out propagating in cavity 260 exits cavity 260 through reflector 250 and ultimately exits fiber laser 100 through end 215.

Figs. 3A-3D show a method of making optical fiber 100. Referring to Fig. 3A, a preform 300 having a cylindrical cross-section with a core 310 and a cladding 320 (having a cylindrical cross-section) is prepared using, for example, modified chemical vapor deposition (MCVD). The outer surface of cladding 320 is ground and polished to yield a preform 330 having a square cross-section with core 310 and cladding 320a (Fig. 3B). Cladding 320a has a square cross-section defined by sides 331, 332, 333, and 334. Preform 330 is then inserted into layer 340 having an inner surface 350 (Fig. 3C). Layer 340 is cylindrical in shape and can be formed from the same material as cladding 320. As shown in Fig. 3D, the air remaining between inner surface 350 and preform 330 is removed to ensure that the vertices 371, 372, 373, and 374 of cladding 320a contact inner surface 350. Layer 340 and square preform 330 are then heated to fuse vertices 371, 372, 373, and 374 with inner wall 350, forming a final preform 380 (Fig. 3D). Fiber 100 is then drawn from final preform 380 (e.g., using a draw tower).

While Figs. 3A-3D show a method of making an optical fiber preform, the invention is not so limited. Other methods can also be used. For example, in some embodiments a preform having a core and a cladding is formed, followed by boring holes into the preform (e.g., using a sonic drill) that run parallel to the preform axis. The optical fiber can then be drawn from the final preform.

While particular embodiments of optical fibers have been described, the invention is not limited to such embodiments. For example, while the core has been shown as being located substantially at the center of the cladding and the exterior layer, the core can be substantially eccentrically disposed with respect to the center of the cladding and/or with respect to the center of the inner surface of the exterior layer.

Moreover, in general, the cross-sectional shape of the cladding may be any two dimensional shape. For example, the cladding may be in the shape of any polygon. In some embodiments, the cladding may be in the shape of any four-sided polygon (e.g., a square, a rectangle, a parallelogram, a trapezoid etc.). As another example, the cladding may have fewer than four sides (e.g., three sides). As a further example, the cladding may have more than four sides (e.g., five sides, six sides, seven sides, eight sides, nine sides, 10 sides, etc.).

Furthermore, the sides of the cladding can be of substantially equal length, or different in length. In some embodiments, a plurality of sides of the cladding may be substantially equal in length, but may differ in length from other sides of the cladding.

In addition, the angles subtended by adjacent sides of the cladding may be substantially equal, or they can be different. In some embodiments, a plurality of the angles subtended by adjacent sides of the cladding may be substantially equal, but may differ from other angles subtended by adjacent sides of the cladding.

In some embodiments, the cross-section of the cladding may be in the shape of a convex polygon chosen so that the pump energy propagating within the optical fiber forms a substantially uniform radiation field. In certain embodiments, the shape of the cladding can be chosen such that substantially all possible modes of pump energy propagating in the optical fiber can intersect the core at least at one point in the fiber (e.g., modes, such as helical modes, that do not intersect the core are substantially unable to propagate along the cladding).

In general, the cladding can occupy any percentage of the area inside the inner surface of the exterior layer (e.g., inner surface 170 of layer 140) (e.g., at least about one percent, at least about two percent, at least about five percent, at least about 10 percent, at least about 20 percent, at least about 30 percent, at least about 40 percent, at least about 50 percent, at least about 60 percent, at least about 70 percent, at least about 80 percent, at least about 90 percent). In certain embodiments (e.g., for three-level lasing), the cladding occupies from about five percent to about 15 percent of the area inside the inner surface of the exterior layer (e.g., inner surface 170 of layer 140). In some embodiments, (e.g., for four-level lasing), the cladding occupies from about 75 percent to about 90 percent of the area inside the inner surface of the exterior layer (e.g., inner surface 170 of layer 140).

In general, the sides of the cladding can be straight or curved (e.g., convex or concave). In some embodiments, one or more sides of a cladding may have portions that are straight, convex and/or concave. Figs. 4A-4C show examples of shapes that the sides of fiber claddings may have. Fig. 4A shows an optical fiber 414 having core 110, a cladding 401 and layer 140. Cladding 401 has a substantially flat side 403 and a convex side 402. Cladding 401 and layer 140 define a region 404 (e.g., a D-shaped region). Fig. 4B shows an optical fiber 412 having core 110, a cladding 410 and layer 140. Cladding 410 has four sides, including a concave side 411. Cladding 410 and layer 140 define regions 415a, 415b, 415c and 415d. Fig. 4C shows an optical fiber 413 having core 110, a cladding 420 and layer 140. Cladding 420 has four sides, including a curved side 421 having portions that are convex and other portions that are concave. Cladding 420 and layer 140 define region 416a, 416b, 416c and 416d. In some embodiments, cladding 401, 410 and/or 420 can be formed of the same material as layer 140 (e.g., a silica material, such as fused silica).

Fig. 4D shows an embodiment of an optical fiber 480 having core 110, cladding 401, layer 140, region 404 and a layer 460. Layer 460 can have any refractive index. For example, the refractive index of layer 460 can be substantially equal to the refractive index of layer 140. Alternatively, the refractive index of layer 460 can be less than the refractive index of layer 140. In some embodiments, the refractive index of layer 460 is less than the refractive index of layer 140. In optical fiber 480, the refractive index of layer 140 can be substantially equal to the refractive index of cladding 401.

Layer 460 can be formed from, for example, silica and silica-containing materials (e.g., fused silica). In some embodiments, layer 460 can be formed from polymeric materials, for example, polymeric materials having a low refractive index (e.g., less than 1.50, less than 1.45, less than 1.40, from about 1.35 to about 1.38). Fluorinated, low index polymeric materials can be used in certain embodiments.

In some embodiments, a precursor to layer 460 can be included in the final preform from which fiber 480 is made. In alternative embodiments, layer 460 can be coated onto fiber 480, at any time during or after fiber 480 is being made.

In general, the cladding contained in an optical fiber may be fused to the inner surface of the layer (e.g., surface 170 of layer 140) along the entire length of the cladding, or along one or more portions of the length of the cladding. Fig. 5 shows a partial cross-sectional view of an embodiment of an optical fiber 500 having a core 510, an exterior layer 540 and a cladding 510 that contacts layer 540 at points 580a, 580b, 580c, 580d, and 580e without contacting layer 540 at points 570a, 570b, 570c, 570d, 570e, 570f. In some embodiments, layer 540 and cladding 510 are fused at one or more of points 580a, 580b, 580c and/or 580d. In certain embodiments, layer 540 and cladding 510 are not fused at points 580a, 580b, 580c and 580d.

While regions have been described as having substantially D-shaped cross-sections, other cross-sections can be used. Generally, the regions can be any shape. In some embodiments, the regions may be substantially regularly shaped (e.g., oval, round, square, triangular, trapezoidal, etc.). In certain embodiments, the regions can be irregularly shaped. Different regions can have different cross-sectional shapes. For example, one region can be substantially D-shaped, while other regions are triangular. Combinations of different shapes can be used.

In some embodiments, one or more regions 130a-130d may be substantially continuous along the length of the optical fiber. In certain embodiments, one or more regions 130a-130d may be discontinuous along the length of the optical fiber. In some embodiments, adjacent regions may be at least partially continuous with adjacent regions (e.g., at points 570a, 570b, 570c, 570d, 570e, and 570f).

Fig. 6 shows a cross-sectional view of an optical fiber 600. Fiber 600 has core 610 and a cladding 620. Cladding includes a region 630 having a different refractive index than cladding 620 (e.g., region 630 has a higher index of refraction than cladding 620 or region 630 has a lower index of refraction than cladding 620). Region 630 can be any two-dimensional shape (e.g., round, oval, irregularly shaped, polygonal, etc.). Although shown in Fig. 6 as having only one region 630, cladding 620 can contain multiple regions 630 (e.g., two regions, three regions, four regions, five regions, six regions, etc.). The region(s) can be continuous or discontinuous along the length of the optical fiber. Moreover, although not shown in Fig. 6, fiber 600 can include a layer disposed on the exterior surface of cladding 620 (e.g., a layer having a higher index of refraction than cladding 620, a layer having a lower index of refraction than layer 620, or a layer having substantially the same index of refraction as cladding 620). In some embodiments, a layer disposed on the exterior surface of cladding 620 can absorb a substantial amount of energy at the wavelength &lgr;P (e.g., a layer disposed on the exterior surface of cladding 620 can be substantially opaque to energy at wavelength &lgr;p). The ratio of the area of region 630 to the area of cladding 620 can be any value (e.g., at least about one percent, at least about five percent, at least about 10 percent, at least about 20 percent, at least about 30 percent, at least about 40 percent, at least about 50 percent, at least about 60 percent, at least about 70 percent, at least about 80 percent, at least about 90 percent).

Fig. 7 shows a system 700 including an energy source 710 (e.g., a laser, such as a semiconductor diode laser) a fiber 701 (e.g., a fiber laser formed of an optical fiber and including reflectors as described herein), a Raman fiber laser 790 and an output cascade 770. Energy source 710 is connected to a combiner 750 via fibers 720, 730 and 740. Combiner 750 is connected to fiber 701 via a coupler 760. Fiber 701 is in turn connected to a Raman fiber laser 790 via a coupler 780, and Raman fiber laser 790 is connected to an output cascade 770 via a fiber coupler 775. In certain embodiments, laser 790 and output cascade 770 are integrated into a single unit.

During operation, energy at wavelength &lgr;P is generated by source 710, propagates along fibers 720, 730, and 740, and is coupled into fiber 701 via combiner 750 and coupler 760. A portion of the energy at &lgr;p is converted by fiber 701 into energy at wavelength &lgr;out.Energy at &lgr;out exits fiber 701, propagates along coupler 780 and is coupled into Raman fiber laser 790. Some of the energy at wavelength &lgr;out entering Raman fiber laser 790 is converted to energy at one or more longer wavelengths. The energy at the longer wavelength(s) is coupled into output cascade 770 by coupler 775. Cascade 770 optionally includes variable output couplers that can be dynamically adjusted to modulate the amount of energy allowed to exit system 700 at desired wavelengths.

While certain embodiments have been described, the invention is not limited to these embodiments. For example, in certain embodiments, an optical fiber can include a core (e.g., a single mode core) that does not contain an active material. As another example, an optical fiber may contain more than one lasing cavity. As a further example, the refractive index of a region (e.g., one or more of regions 130a-130d) can be equal to or less than the refractive index of the cladding.

Moreover, in certain embodiments, the optical fiber is substantially devoid of a support structure (e.g., a silica material, such as a silica web) between the portions of the optical fiber that define a region having a lower refractive index than the cladding. As an example, regions 130a, 130b, 130c and/or 130d can be substantially devoid of a support structure (e.g., a silica material, such as a silica web). As another example, region 630 can be substantially devoid of a support structure (e.g., a silica material, such as a silica web).

Other embodiments are in the claims.


Anspruch[de]
Optische Faser (100; 412; 413; 414; 480) mit: einem Kern (110; 510), der einen Brechungsindex aufweist, und mit aktivem Material; einem Mantel (120; 401; 410; 420), der den Kern umgibt, um Pumpenergie entlang der Faser weiterzuleiten, zur Überschneidung mit dem Kern, wobei der Mantel einen ersten Brechungsindex aufweist, der geringer ist als der Brechungsindex des Kerns; einer Schicht (140; 540), die den Mantel kontaktiert und umgibt, wobei die Schicht einen zweiten Brechungsindex hat, der unterschiedlich zum ersten Brechungsindex ist; einem Bereich (130a; 404; 415a; 416a) zwischen der Schicht und dem Mantel, wobei der Bereich einen dritten Brechungsindex hat, der sich von dem ersten Brechungsindex und von dem zweiten Brechungsindex unterscheidet, und wobei der Mantel eine gerade Seite umfasst, so dass die Schicht und die gerade Seite den Bereich definieren oder wobei der Mantel eine Seite aufweist, die teilweise den Bereich definiert, wobei diese Seite einen gebogenen Abschnitt umfasst. Optische Faser nach Anspruch 1, mit: einer weiteren Schicht (460), die die Schicht (140) umgibt, wobei die weitere Schicht einen vierten Brechungsindex hat, der geringer ist als der zweite Brechungsindex der Schicht. Optische Faser nach Anspruch 2, wobei die Schicht ein Kieselerdenmaterial aufweist. Optische Faser nach Anspruch 2 oder 3, wobei der Mantel (410) eine Seite (411) umfasst, die den Bereich (415a) teilweise definiert, wobei die Seite zumindest einen Abschnitt umfasst, der entweder konvex oder konkav ist. Optische Faser (100) mit: einem Kern (110), der einen Brechungsindex aufweist; einem Mantel (120), der den Kern umgibt und der einen ersten Brechungsindex hat, der geringer ist als der Brechungsindex; einer Schicht (140), die den Mantel umgibt und die einen zweiten Brechungsindex hat; wobei der Mantel eine erste und eine zweite benachbarte Seite (160a, 160b) umfasst, die eine Ecke (150a) ausbilden, die mit der Schicht zusammengeschmolzen ist; und wobei die erste Seite (160a) des Mantels teilweise einen ersten Bereich (130a) definiert, der sich zwischen dem Mantel und der Schicht befindet, sowie die zweite Seite (160b) des Mantels teilweise einen zweiten Bereich (130b) definiert, der sich zwischen dem Mantel und der Schicht befindet, wobei jeder dieser Bereiche einen Brechungsindex aufweist, der zu dem ersten Brechungsindex unterschiedlich ist. Optische Faser nach Anspruch 5, wobei zumindest eine der Seiten einen Abschnitt umfasst, der gekrümmt ausgebildet ist. Optische Faser nach Anspruch 5 oder 6, wobei der Mantel (120) einen im wesentlichen quadratischen Querschnitt aufweist. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei die Schicht einen innenliegende Oberfläche (170) hat, und wobei der Mantel zumindest etwa 60% des Bereichs innerhalb der innenliegenden Oberfläche der Schicht belegt. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei ein Querschnitt des Mantels (120) als ein konvexes Vieleck ausgebildet ist. Optische Faser nach Anspruch 9, wobei das konvexe Vieleck acht Seiten aufweist. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei der Bereich (130a; 404; 415a; 416a) oder zumindest einer der Bereiche (130a, 130b) einen D-förmigen Querschnitt aufweist. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei der Bereich (130a; 404; 415a; 416a) oder zumindest einer der Bereiche (130a, 130b) einen Hohlraum umfasst. Optische Faser nach Anspruch 12, wobei der Hohlraum evakuiert ist. Optische Faser nach Anspruch 12, wobei der Hohlraum ein Gas enthält. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei der Bereich (130a; 404; 415a; 416a) oder zumindest einer der Bereiche (130a, 130b) ein festes Material enthält. Optische Faser nach irgendeinem der Ansprüche 1 bis 15, wobei die Schicht (140) einen zweiten Brechungsindex hat, der geringer ist als der erste Brechungsindex. Optische Faser nach irgendeinem der Ansprüche 1 bis 15, wobei die Schicht einen zweiten Brechungsindex hat, der größer ist als der erste Brechungsindex des Mantels. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei die Schicht (140) eine Innenfläche hat, die den Bereich, den ersten Bereich oder den unterschiedlichen Bereich teilweise definiert, wobei der Bereich, der erste Bereich oder der unterschiedliche Bereich einen Brechungsindex aufweisen, der zu dem ersten Brechungsindex unterschiedlich ist; und

wobei der Mantel zumindest etwa 60% des Bereichs innerhalb der Innenfläche der Schicht belegt.
Optische Faser nach Anspruch 18, wobei der Mantel (120) zumindest etwa 70% des Bereichs innerhalb der Innenfläche der Schicht belegt. Optische Faser nach Anspruch 18, wobei der Mantel (120) zumindest etwa 80% des Bereichs innerhalb der Innenfläche der Schicht belegt. Optische Faser nach Anspruch 18, wobei der Mantel (120) zumindest etwa 90% des Bereichs innerhalb der Innenfläche der Schicht belegt. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei die Schicht (120) eine Innenfläche (170) hat, die einen kreisförmigen Querschnitt aufweist. Optische Faser nach irgendeinem der vorhergehenden Ansprüche, wobei der Kern (110) Seltenerd-Ionen umfasst. Optische Faser nach Anspruch 23, wobei die Seltenerd-Ionen Ytterbium-Ionen umfassen. System, mit: einer Energiequelle; und einer optischen Faser nach irgendeinem der vorhergehenden Ansprüche, wobei die Energiequelle derart konfiguriert ist, dass die Energieabgabe der Energiequelle bei der Pumpwellenlänge in die optische Faser eingekoppelt werden kann. System nach Anspruch 25, wobei die Energiequelle einen Laser umfasst.
Anspruch[en]
An optical fiber (100; 412; 413; 414; 480) comprising: a core (110; 510) comprising an index of refraction and active material; a cladding (120; 401; 410; 420) surrounding said core for propagating pump energy along said fiber for intersection with said core, said cladding comprising a first index of refraction that is less than said index of refraction of said core; a layer (140; 540) surrounding and contacting said cladding, said layer comprising a second index of refraction that is different than said first index of refraction; a region (130a; 404; 415a; 416a) between said layer and said cladding, said region comprising a third index of refraction that is different than said first and second indices of refraction, wherein said cladding comprises a straight side, said layer and said straight side defining said region, or wherein said cladding includes a side partially defining said region, said side including a curved portion. An optical fiber according to claim 1 comprising: another layer (460) surrounding said layer (140), said another layer comprising a fourth index of refraction that is less than said second index of refraction of said layer. An optical fiber according to claim 2, wherein said layer comprises a silica material. An optical fiber according to claim 2 or 3, wherein said cladding (410) includes a side (411) partially defining said region (415a), said side including at least a portion that is one of convex and concave. An optical fiber (100) comprising: a core (110) having an index of refraction; a cladding (120) surrounding said core and having a first index of refraction that is less than said index of refraction; a layer (140) surrounding said cladding and having a second index of refraction; said cladding including first and second adjacent sides (160a, 160b) forming a vertex (150a) that is fused to said layer; and wherein said first side (160a) of said cladding partially defines a first region (130a) that is between the cladding and the layer and the second side (160b) of said cladding partially defines a different region (130b) that is between said cladding and said layer, each of said regions comprising an index of refraction that is different than said first index of refraction. An optical fiber according to claim 5, wherein at least one of said sides includes a portion that is curved. An optical fiber according to claim 5 or 6, wherein said cladding (120) comprises a substantially square cross section. An optical fiber according to any preceding claim, wherein said layer has an inner surface (170), and wherein said cladding occupies at least about 60% of the area inside said inner surface of said layer. An optical fiber according to any preceding claim, wherein a cross section of said cladding (120) is shaped as a convex polygon. An optical fiber according to claim 9, wherein said convex polygon has eight sides. An optical fiber according to any preceding claim, wherein said region (130a; 404; 415a; 416a) or at least one of said regions (130a, 130b) has a D-shaped cross section. An optical fiber according to any preceding claim, wherein said region (130a; 404; 415a; 416a) or at least one of said regions (130a, 130b) comprises a void. An optical fiber according to claim 12, wherein said void is evacuated. An optical fiber according to claim 12, wherein said void contains a gas. An optical fiber according to any preceding claim, wherein said region (130a; 404; 415a; 416a) or at least one of said regions (130a, 130b) contains a solid material. An optical fiber according to any one of claims 1 to 15, wherein said layer (140) comprises said second index of refraction that is less than said first index of refraction. An optical fiber according to any one of claims 1 to 15, wherein said layer comprises said second index of refraction that is greater than said first index of refraction of said cladding. An optical fiber according to any preceding claim, wherein said layer (140) having an inner surface partially defining said region, said first region or said different region, said region, said first region or said different region comprising an index of refraction that is different than said first index of refraction; and

wherein said cladding occupies at least about 60% of the area inside said inner surface of said layer.
An optical fiber according to claim 18, wherein said cladding (120) occupies at least about 70% of the area inside said inner surface of said layer. An optical fiber according to claim 18, wherein said cladding (120) occupies at least about 80% of the area inside said inner surface of said layer. An optical fiber according to claim 18, wherein said cladding (120) occupies at least about 90% of the area inside said inner surface of said layer An optical fiber according to any preceding claim, wherein said layer (120) has an inner surface (170) having a circular cross section. An optical fiber according to any preceding claim, wherein said core (110) comprises rare earth ions. An optical fiber according to claim 23, wherein said rare earth ions include ytterbium ions. A system, comprising: an energy source; and an optical fiber according to any of the preceding claims, wherein the energy source is configured so that energy output by the energy source at the pump wavelength can be coupled into the optical fiber. A system according to claim 25, wherein the energy source comprises a laser.
Anspruch[fr]
Fibre optique (100 ; 412 ; 413; 414 ; 480) comportant : un coeur (110 ; 510) présentant un indice de réfraction et comprenant une matière active ; une gaine (120 ; 401 ; 410 ; 420) entourant ledit coeur pour propager une énergie de pompage le long de ladite fibre pour une intersection avec ledit coeur, ladite gaine présentant un premier indice de réfraction qui est inférieur audit indice de réfraction dudit coeur ; une couche (140 ; 540) entourant ladite gaine et en contact avec elle, ladite couche présentant un second indice de réfraction qui est différent dudit premier indice de réfraction ; une région (130a ; 404 ; 415a ; 416a) entre ladite couche et ladite gaine, ladite région présentant un troisième indice de réfraction qui est différent desdits premier et deuxième indices de réfraction, ladite gaine comportant un côté droit, ladite couche et ledit côté droit définissant ladite région, ou bien ladite gaine comportant un côté définissant partiellement ladite région, ledit côté comprenant une partie courbe. Fibre optique selon la revendication 1, comportant : une autre couche (460) entourant ladite couche (140), ladite autre couche ayant un quatrième indice de réfraction qui est inférieur audit deuxième indice de réfraction de ladite couche. Fibre optique selon la revendication 2, dans laquelle ladite couche comprend une matière du type silice. Fibre optique selon la revendication 2 ou 3, dans laquelle ladite gaine (410) comprend un côté (411) définissant partiellement ladite région (415a), ledit côté comprenant au moins une partie qui est de l'une des formes convexe et concave. Fibre optique (100) comportant : un coeur (110) ayant un indice de réfraction ; une gaine (120) entourant ledit coeur et ayant un premier indice de réfraction qui est inférieur audit indice de réfraction ; une couche (140) entourant ladite gaine et ayant un deuxième indice de réfaction ; ladite gaine comprenant des premier et second côtés adjacents (160a, 160b) formant un sommet (150a) qui est soudé à ladite couche ; et dans laquelle ledit premier côté (160a) de ladite gaine définit partiellement une première région (130a) qui se trouve entre la gaine et la couche et le second côté (160b) de ladite gaine définit partiellement une région différente (130b) qui se trouve entre ladite gaine et ladite couche, chacune desdites régions ayant un indice de réfraction qui est différent dudit premier indice de réfraction. Fibre optique selon la revendication 5, dans laquelle au moins l'un desdits côtés comprend une partie qui est courbe. Fibre optique selon la revendication 5 ou 6, dans laquelle ladite gaine (120) présente une section transversale sensiblement carrée. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle ladite couche a une surface intérieure (170), et dans laquelle ladite gaine occupe au moins environ 60 % de l'étendue à l'intérieur de ladite surface intérieure de ladite couche. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle une section transversale de ladite gaine (120) est configurée en un polygone convexe. Fibre optique selon la revendication 9, dans laquelle ledit polygone convexe a huit côtés. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle ladite région (130a ; 404 ; 415a ; 416a) ou au moins l'une desdites régions (130a, 130b) a une section transversale en forme de D. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle ladite région (130a ; 404 ; 415a ; 416a) ou au moins l'une desdites régions (130a, 130b) comprend une lacune. Fibre optique selon la revendication 12, dans laquelle le vide est établi dans ladite lacune. Fibre optique selon la revendication 12, dans laquelle ladite lacune contient un gaz. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle ladite région (130a ; 404; 415a ; 416a) ou au moins l'une desdites régions (130a, 130b) contient une matière solide. Fibre optique selon l'une quelconque des revendications 1 à 15, dans laquelle ladite couche (140) présente ledit deuxième indice de réfraction qui est inférieur audit premier indice de réfraction. Fibre optique selon l'une quelconque des revendications 1 à 15, dans laquelle ladite couche présente ledit deuxième indice de réfraction qui est supérieur audit premier indice de réfraction de ladite gaine. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle ladite couche (140) a une surface intérieure définissant partiellement ladite région, ladite première région ou ladite région différente, ladite région, ladite première région ou ladite région différente ayant un indice de réfraction qui est différent dudit premier indice de réfraction ; et

dans laquelle ladite gaine occupe au moins environ 60 % de l'étendue à l'intérieur de ladite surface intérieure de ladite couche.
Fibre optique selon la revendication 18, dans laquelle ladite gaine (120) occupe au moins environ 70 % de l'étendue à l'intérieur de ladite surface intérieure de ladite couche. Fibre optique selon la revendication 18, dans laquelle ladite gaine (120) occupe au moins environ 80 % de l'étendue à l'intérieur de ladite surface intérieure de ladite couche. Fibre optique selon la revendication 18, dans laquelle ladite gaine (120) occupe au moins environ 90 % de l'étendue à l'intérieur de ladite surface intérieure de ladite couche. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle ladite couche (120) a une surface intérieure (170) ayant une section transversale circulaire. Fibre optique selon l'une quelconque des revendications précédentes, dans laquelle ledit coeur (110) comprend des ions d'une terre rare. Fibre optique selon la revendication 23, dans laquelle lesdits ions d'une terre rare comprennent des ions d'ytterbium. Système, comportant : une source d'énergie ; et une fibre optique selon l'une quelconque des revendications précédentes, dans lequel la source d'énergie est configurée de façon que de l'énergie émise par la source d'énergie à la longueur d'onde de pompage puisse être introduite par couplage dans la fibre optique. Système selon la revendication 25, dans lequel la source d'énergie comprend un laser.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com