PatentDe  


Dokumentenidentifikation EP1419105 08.11.2007
EP-Veröffentlichungsnummer 0001419105
Titel ZEOLITH SSZ-60
Anmelder Chevron U.S.A. Inc., San Ramon, Calif., US
Erfinder ELOMARI, Saleh, Fairfield CA 94534, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60222674
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 03.07.2002
EP-Aktenzeichen 027497783
WO-Anmeldetag 03.07.2002
PCT-Aktenzeichen PCT/US02/21143
WO-Veröffentlichungsnummer 2003006369
WO-Veröffentlichungsdatum 23.01.2003
EP-Offenlegungsdatum 19.05.2004
EP date of grant 26.09.2007
Veröffentlichungstag im Patentblatt 08.11.2007
IPC-Hauptklasse C01B 21/20(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse B01J 29/70(2006.01)A, L, I, 20051017, B, H, EP   B01J 29/76(2006.01)A, L, I, 20051017, B, H, EP   B01J 29/86(2006.01)A, L, I, 20051017, B, H, EP   C01B 39/02(2006.01)A, L, I, 20051017, B, H, EP   C01B 39/12(2006.01)A, L, I, 20051017, B, H, EP   C01B 39/48(2006.01)A, L, I, 20051017, B, H, EP   C10G 11/05(2006.01)A, L, I, 20051017, B, H, EP   C10G 29/20(2006.01)A, L, I, 20051017, B, H, EP   C10G 45/64(2006.01)A, L, I, 20051017, B, H, EP   C10G 47/16(2006.01)A, L, I, 20051017, B, H, EP   B01D 53/86(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
BACKGROUND OF THE INVENTION Field of the Invention

The present invention relates to new crystalline zeolite SSZ-60 and a method for preparing SSZ-60 using a N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation templating agent.

State of the Art

Because of their unique sieving characteristics, as well as their catalytic properties, crystalline molecular sieves and zeolites are especially useful in applications such as hydrocarbon conversion, gas drying and separation. Although many different crystalline molecular sieves have been disclosed, there is a continuing need for new zeolites with desirable properties for gas separation and drying, hydrocarbon and chemical conversions, and other applications. New zeolites may contain novel internal pore architectures, providing enhanced selectivities in these processes.

Crystalline aluminosilicates are usually prepared from aqueous reaction mixtures containing alkali or alkaline earth metal oxides, silica, and alumina. Crystalline borosilicates are usually prepared under similar reaction conditions except that boron is used in place of aluminum. By varying the synthesis conditions and the composition of the reaction mixture, different zeolites can often be formed.

WO0109037 relates to crystalline zeolite SSZ-52 prepared using a quaternary ammonium cation templating agent comprising an anion which is not detrimental to the formation of the SSZ-52. SSZ-52 is useful in catalysts for hydrocarbon conversion reactions.

WO0144109 relates to crystalline zeolite SSZ-50 prepared using a quaternary ammonium cation templating agent comprising an anion which is not detrimental to the formation of the SSZ-50. SSZ-50 is useful in catalysts for hydrocarbon conversion reactions.

US6049018 relates to a synthetic porous crystalline material, designated MCM-68, a method and novel polycyclic organic cation for its preparation and its use in catalytic conversion of organic compounds. The crystalline material exhibits a distinctive X-ray diffraction pattern and has a unique crystal structure which contains at least one channel system, in which each channel is defined by a 12-membered ring of tetrahedrally coordinated atoms, and at least two further, independent channel systems, in each of which each channel is defined by a 10-membered ring of tetrahedrally coordinated atoms, wherein the number of unique 10-membered ring channels is twice the number of 12-membered ring channels.

SUMMARY OF INVENTION

The present invention is directed to a family of crystalline molecular sieves with unique properties, referred to herein as "zeolite SSZ-60" or simply "SSZ-60". Preferably, SSZ-60 is obtained in its silicate, aluminosilicate, titanosilicate, vanadosilicate or borosilicate form. The term "silicate" refers to a zeolite having a high mole ratio of silicon oxide relative to aluminum oxide, preferably a mole ratio greater than 100, including zeolites comprised entirely of silicon oxide. As used herein, the term "aluminosilicate" refers to a zeolite containing both alumina and silica and the term "borosilicate" refers to a zeolite containing oxides of both boron and silicon.

In accordance with the broadest aspect of this invention, there is provided a zeolite having a mole ratio greater than about 20 of an oxide of a first tetravalent element to an oxide of a second tetravalent element different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II.

Further, in accordance with the broadest aspect of the invention, there is provided a zeolite having a mole ratio greater than about 20 of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof.

In an embodiment of the present invention there is further provided a zeolite having a composition, as synthesized and in the anhydrous state, in terms of mole ratios as follows: YO2/WcOd 20 - 180 M2/n/YO2 0.01 - 0.03 Q/YO2 0.02 - 0:05
wherein Y is silicon, germanium or a mixture thereof, W is aluminum, gallium; iron, boron, titanium, indium, vanadium or mixtures thereof; c is 1 or 2; d is 2 when c is 1 (i.e., W is tetravalent) or d is 3 or 5 when c is 2 (i.e., d is 3 when W is trivalent or 5 when W is pentavalent); M is an alkali metal cation, alkaline earth metal cation or mixtures thereof; n is the valence of M (i.e., 1 or 2); and Q is a N-ethyl-N-(3,3,5-trimethylcyclohexyl)-pyrrolidinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation.

The zeolite of the present invention may be prepared by thermally treating a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof greater than about 20 at a temperature of from about 200°C to about 800°C. The present invention also includes this thus-prepared zeolite which is predominantly in the hydrogen form, which hydrogen form is prepared by ion exchanging with an acid or with a solution of an ammonium salt followed by a second calcination.

Also provided in accordance with the present invention is a method of preparing the zeolite described above, said method comprising contacting under crystallization conditions sources of said oxides and a templating agent comprising a N-ethyl-N-(3,3,5-trimethylcyclohexyl)-pyrrolidinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation.

In accordance with the present invention there is provided a process for converting hydrocarbons comprising contacting a hydrocarbonaceous feed at hydrocarbon converting conditions with a catalyst comprising the zeolite of this invention. The zeolite may be predominantly in the hydrogen form. It may also be.substantially free of acidity.

Further provided by the present invention is a hydrocracking process comprising contacting a hydrocarbon feedstock under hydrocracking conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.

This invention also includes a dewaxing process comprising contacting a hydrocarbon feedstock under dewaxing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.

The present invention also includes a process for improving the viscosity index of a dewaxed product of waxy hydrocarbon feeds comprising contacting the waxy hydrocarbon feed under isomerization dewaxing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.

The present invention further includes a process for producing a C20+ lube oil from a C20+ olefin feed comprising isomerizing said olefin feed under isomerization conditions over a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The zeolite may be predominantly in the hydrogen form.

In accordance with this invention, there is also provided a process for catalytically dewaxing a hydrocarbon oil feedstock boiling above about 177°C (350°F) and containing straight chain and slightly branched chain hydrocarbons comprising contacting said hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of about 0.103-20.7 MPa (15-3000 psi) with a catalyst comprising at least one Group VIII metal and the zeolite of this invention, preferably predominantly in the hydrogen form. The catalyst may be a layered catalyst comprising a first layer comprising at least one Group VIII metal and the zeolite of this invention, and a second layer comprising an aluminosilicate zeolite which is more shape selective than the zeolite of said first layer.

Also included in the present invention is a process for preparing a lubricating oil which comprises hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing said effluent comprising hydrocracked oil at a temperature of at least about 204°C (400°F) and at a pressure of from about 0.103 MPa gauge (15 psig) to about 20.7 MPa gauge (3000 psig) in the presence of added hydrogen gas with a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The zeolite may be predominantly in the hydrogen form.

Further included in this invention is a process for isomerization dewaxing a raffinate comprising contacting said raffinate in the presence of added hydrogen with a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The raffinate may be bright stock, and the zeolite may be predominantly in the hydrogen form.

Also included in this invention is a process for increasing the octane of a hydrocarbon feedstock to produce a product having an increased aromatics content comprising contacting a hydrocarbonaceous feedstock which comprises normal and slightly branched hydrocarbons having a boiling range above about 40°C and less than about 200°C, under aromatic conversion conditions with a catalyst comprising the zeolite of this invention made substantially free of acidity by neutralizing said zeolite with a basic metal. Also provided in this invention is such a process wherein the zeolite contains a Group VIII metal component.

Also provided by the present invention is a catalytic cracking process comprising contacting a hydrocarbon feedstock in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form. Also included in this invention is such a catalytic cracking process wherein the catalyst additionally comprises a large pore crystalline cracking component

This invention further provides an isomerization process for isomerizing C4 to C7 hydrocarbons, comprising contacting a feed having normal and slightly branched C4 to C7 hydrocarbons under isomerizing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form. The zeolite may be impregnated with at least one Group VIII metal, preferably platinum. The catalyst may be calcined in a steam/air mixture at an elevated temperature after impregnation of the Group VIII metal.

Also provided by the present invention is a process for alkylating an aromatic hydrocarbon which comprises contacting under alkylation conditions at least a molar excess of an aromatic hydrocarbon with a C2 to C20 olefin under at least partial liquid phase conditions and in the presence of a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form. The olefin may be a C2 to C4 olefin, and the aromatic hydrocarbon and olefin may be present in a molar ratio of about 4:1 to about 20:1, respectively. The aromatic hydrocarbon may be selected from the group consisting of benzene, toluene, ethylbenzene, xylene, naphthalene, naphthalene derivatives, dimethylnaphthalene or mixtures thereof.

Further provided in accordance with this invention is a process for transalkylating an aromatic hydrocarbon which comprises contacting under transalkylating conditions an aromatic hydrocarbon with a polyalkyl aromatic hydrocarbon under at least partial liquid phase conditions and in the presence of a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form. The aromatic hydrocarbon and the polyalkyl aromatic hydrocarbon may be present in a molar ratio of from about 1:1 to about 25:1, respectively.

The aromatic hydrocarbon may be selected from the group consisting of benzene, toluene, ethylbenzene, xylene, or mixtures thereof, and the polyalkyl aromatic hydrocarbon may be a dialkylbenzene.

Further provided by this invention is a process to convert paraffins to aromatics which comprises contacting paraffins under conditions which cause paraffins to convert to aromatics with a catalyst comprising the zeolite of this invention, said catalyst comprising gallium, zinc, or a compound of gallium or zinc.

In accordance with this invention there is also provided a process for isomerizing olefins comprising contacting said olefin under conditions which cause isomerization of the olefin with a catalyst comprising the zeolite of this invention.

Further provided in accordance with this invention is a process for isomerizing an isomerization feed comprising an aromatic C8 stream of xylene isomers or mixtures of xylene isomers and ethylbenzene, wherein a more nearly equilibrium ratio of ortho-, meta- and para-xylenes is obtained, said process comprising contacting said feed under isomerization conditions with a catalyst comprising the zeolite of this invention.

The present invention further provides a process for oligomerizing olefins comprising contacting an olefin feed under oligomerization conditions with a catalyst comprising the zeolite of this invention.

This invention also provides a process for converting lower alcohols and other oxygenated hydrocarbons comprising contacting said lower alcohol or other oxygenated hydrocarbon with a catalyst comprising the zeolite of this invention under conditions to produce liquid products.

Further provided in accordance with the present invention is a process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons comprising the steps of:

  1. (a) introducing into a reaction zone a lower molecular weight hydrocarbon-containing gas and contacting said gas in said zone under C2+ hydrocarbon synthesis conditions with the catalyst and a metal or metal compound capable of converting the lower molecular weight hydrocarbon to a higher molecular weight hydrocarbon; and
  2. (b) withdrawing from said reaction zone a higher molecular weight hydrocarbon-containing stream.

In accordance with this invention, there is provided a process for the reduction of oxides of nitrogen contained in a gas stream in the presence of oxygen wherein said process comprises contacting the gas stream with the zeolite of this invention. The zeolite may contain a metal or metal ions (such as cobalt, copper or mixtures thereof) capable of catalyzing the reduction of the oxides of nitrogen, and may be conducted in the presence of a stoichiometric excess of oxygen. In a preferred embodiment, the gas stream is the exhaust stream of an internal combustion engine.

DETAILED DESCRIPTION OF THE INVENTION

The present invention comprises a family of crystalline, large pore zeolites designated herein "zeolite SSZ-60" or simply "SSZ-60". As used herein, the term "large pore" means having an average pore size diameter greater than about 6.0 Angstroms (6.0 × 10-10 m), preferably from about 6.5 Angstroms (6.5 × 10-10 m) to about 7.5 Angstroms (7.5 × 10-10 m).

In preparing SSZ-60 zeolites, a N-ethyl-N-(3,3,5-trimethylcyclohexyl)-pyrrohdinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation is used as a crystallization template. In general, SSZ-60 is prepared by contacting an active source of one or more oxides selected from the group consisting of monovalent element oxides, divalent element oxides, trivalent element oxides, and tetravalent element oxides with the N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation templating agent.

SSZ-60 is prepared from a reaction mixture having the composition shown in Table A below. <u>TABLE A</u> Reaction Mixture Typical Preferred YO2/WaOb > 20 30 - 70 OH-/YO2 0.10 - 0.50 0.20 - 0.30 Q/YO2 0.05 - 0.50 0.10 - 0.20 M2/n/YO2 0.02 - 0.40 0.10 - 0.25 H2O/YO2 30 - 80 35 - 45
where Y, W, Q, M and n are as defined above, and a is 1 or 2, and b is 2 when a is 1 (i.e., W is tetravalent) and b is 3 when a is 2 (i.e., W is trivalent).

In practice, SSZ-60 is prepared by a process comprising:

  1. (a) preparing an aqueous solution containing sources of at least one oxide capable of forming a crystalline molecular sieve and a N-ethyl-N-(3,3,5-trimethylcyclohexyl)-pyrrolidinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation having an anionic counterion which is not detrimental to the formation of SSZ-60;
  2. (b) maintaining the aqueous solution under conditions sufficient to form crystals of SSZ-60; and
  3. (c) recovering the crystals of SSZ-60.

Accordingly, SSZ-60 may comprise the crystalline material and the templating agent in combination with metallic and non-metallic oxides bonded in tetrahedral coordination through shared oxygen atoms to form a cross-linked three dimensional crystal structure. The metallic and non-metallic oxides comprise one or a combination of oxides of a first tetravalent element(s), and one or a combination of a second tetravalent element(s) different from the first tetravalent element(s), trivalent element(s), pentavalent element(s) or mixture thereof. The first tetravalent element(s) is preferably selected from the group consisting of silicon, germanium and combinations thereof. More preferably, the first tetravalent element is silicon. The second tetravalent element (which is different from the first tetravalent element), trivalent element and pentavalent element is preferably selected from the group consisting of aluminum, gallium, iron, boron, titanium, indium, vanadium and combinations thereof. More preferably, the second trivalent or tetravalent element is aluminum or boron.

Typical sources of aluminum oxide for the reaction mixture include aluminates, alumina, aluminum colloids, aluminum oxide coated on silica sol, hydrated alumina gels such as Al(OH)3 and aluminum compounds such as AlCl3 and Al2(SO4)3. Typical sources of silicon oxide include silicates, silica hydrogel, silicic acid, fumed silica, colloidal silica, tetra-alkyl orthosilicates, and silica hydroxides. Boron, as well as gallium, germanium, titanium, indium, vanadium and iron, can be added in forms corresponding to their aluminum and silicon counterparts.

A source zeolite reagent may provide a source of aluminum or boron. In most cases, the source zeolite also provides a source of silica. The source zeolite in its dealuminated or deboronated form may also be used as a source of silica, with additional silicon added using, for example, the conventional sources listed above. Use of a source zeolite reagent as a source of alumina for the present process is more completely described in U.S. Patent No. 5,225,179, issued July 6, 1993 to Nakagawa entitled "Method of Making Molecular Sieves".

Typically, an alkali metal hydroxide and/or an alkaline earth metal hydroxide, such as the hydroxide of sodium, potassium, lithium, cesium, rubidium, calcium, and magnesium, is used in the reaction mixture; however, this component can be omitted so long as the equivalent basicity is maintained. The templating agent may be used to provide hydroxide ion. Thus, it may be beneficial to ion exchange, for example, the halide for hydroxide ion, thereby reducing or eliminating the alkali metal hydroxide quantity required. The alkali metal cation or alkaline earth cation may be part of the as-synthesized crystalline oxide material, in order to balance valence electron charges therein.

The reaction mixture is maintained at an elevated temperature until the crystals of the SSZ-60 zeolite are formed. The hydrothermal crystallization is usually conducted under autogenous pressure, at a temperature between 100°C and 200°C, preferably between 135°C and 160°C. The crystallization period is typically greater than 1 day and preferably from about 3 days to about 20 days.

Preferably, the zeolite is prepared using mild stirring or agitation.

During the hydrothermal crystallization step, the SSZ-60 crystals can be allowed to nucleate spontaneously from the reaction mixture. The use of SSZ-60 crystals as seed material can be advantageous in decreasing the time necessary for complete crystallization to occur. In addition, seeding can lead to an increased purity of the product obtained by promoting the nucleation and/or formation of SSZ-60 over any undesired phases. When used as seeds, SSZ-60 crystals are added in an amount between 0.1 and 10% of the weight of silica used in the reaction mixture.

Once the zeolite crystals have formed, the solid product is separated from the reaction mixture by standard mechanical separation techniques such as filtration. The crystals are water-washed and then dried, e.g., at 90°C to 150°C for from 8 to 24 hours, to obtain the as-synthesized SSZ-60 zeolite crystals. The drying step can be performed at atmospheric pressure or under vacuum.

SSZ-60 as prepared has a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof greater than about 20; and has, after calcination, the X-ray diffraction lines of Table II below. SSZ-60 further has a composition, as synthesized (i.e., prior to removal of the templating agent from the zeolite) and in the anhydrous state, in terms of mole ratios, shown in Table B below. <u>TABLE B</u> As-Synthesized SSZ-60 YO2/WcOd > 20 M2/n/YO2 0.01 - 0.03 Q/YO2 0.02 - 0.05
where Y, W, c, d, M and Q are as defined above.

SSZ-60 can be made essentially aluminum free, i.e., having a silica to alumina mole ratio of ∞. A method of increasing the mole ratio of silica to alumina is by using standard acid leaching or chelating treatments. However, essentially aluminum-free SSZ-60 can be synthesized directly using essentially aluminum-free silicon sources as the main tetrahedral metal oxide component, if boron is also present. SSZ-60 can also be prepared directly as either an aluminosilicate or a borosilicate.

Lower silica to alumina ratios may also be obtained by using methods which insert aluminum into the crystalline framework. For example, aluminum insertion may occur by thermal treatment of the zeolite in combination with an alumina binder or dissolved source of alumina. Such procedures are described in U.S. Patent No. 4,559,315, issued on December 17,1985 to Chang et al.

It is believed that SSZ-60 is comprised of a new framework structure or topology which is characterized by its X-ray diffraction pattern. SSZ-60 zeolites, as-synthesized, have a crystalline structure whose X-ray powder diffraction pattern exhibit the characteristic lines shown in Table I and is thereby distinguished from other zeolites. <u>TABLE I</u> As-Synthesized SSZ-60 Two Theta(deg.)(a) d-spacing (Å / × 10-10 m) Relative Intensity(b) 6.4 13.8 M 7.6 11.6 M 8.0 11.0 S 10.3 8.56 M 15.2 5.82 W 17.4 5.09 M 19.3 4.60 M 20.5 4.33 S 22.4 3.97 VS 24.2 3.69 M 27.2 3.28 M 28.1 3.17 W 35.9 2.50 M (a)±0.2

(b) The X-ray patterns provided are based on a relative intensity scale in which the strongest line in the X-ray pattern is assigned a value of 100: W(weak) is less than 20; M(medium) is between 20 and 40; S(strong) is between 40 and 60; VS(very strong) is greater than 60.

Table IA below shows the X-ray powder diffraction lines for as-synthesized SSZ-60 including actual relative intensities. <u>TABLE IA</u> Two Theta(a) d-spacing (Å / × 10-10 m) Intensity I/Io x 100. 6.39 13.83 38 7.64 Sh 11.56 24 7.98 11.07 49 10.29 8.588 19 13.40 6.604 6 15.19 5.828 12 17.44 5.080 36 19.30 4.596 36 20.53 4.322 57 21.49 4.132 13 22.36 3.973 100 23.39 3.801 16 24.12 Sh 3.687 18 24.23 3.670 25 25.22 3.528 13 25.95 3.431 15 26.78 Sh 3.327 12 27.16 3.281 27 28.08 3.176 19 29.05 3.071 6 30.72 2.908 6 31.34 2.852 5 32.65 2.740 6 33.63 2.663 5 35.87 2.594 31 37.47 2.502 4 39.58 2.398 4 (a)± 0.2

After calcination, the SSZ-60 zeolites have a crystalline structure whose X-ray powder diffraction pattern include the characteristic lines shown in Table II: <u>TABLE II</u> Calcined SSZ-60 Two Theta (deg.)(a) d-spacing (Å / × 10-10 m) Relative Intensity 6.4 13.8 VS 7.6 11.6 S 8.0 11.0 VS 10.25 8.62 S 15.1 5.86 W 17.5 5.06 W 19.2 4.62 M 20.4 4.35 M 22.3 3.98 S 24.2 3.67 W 27.1 3.29 W 28.0 3.18 W 35.7 2.51 W (a) ±0.2

Table IIA below shows the X-ray powder diffraction lines for calcined SSZ-60 including actual relative intensities. <u>TABLE IIA</u> Two Theta (deg.)(a) d-spacing (Å / × 10-10 m) Intensity I/Io x 100 6.36 13.88 100 7.63 Sh 11.58 44 7.98 11.07 76 10.25 8.625 48 15.11 5.860 5 16.12 5.495 4 17.47 5.073 10 18.07 4.904 2 19.20 4.620 40 19.70 4.503 2 20.44 4.342 39 22.28 3.987 64 23.32 3.811 15 24.19 3.676 14 25.17 3.536 9 25.86 3.442 12 26.59 3.349 10 27.11 3.286 13 28.00 3.185 6 29.03 3.074 4 30.56 2.923 3 31.32 2.854 5 32.57 2.747 4 33.53 2.671 4 35.70 2.513 18 (a) ±0.2

The X-ray powder diffraction patterns were determined by standard techniques. The radiation was the K-alpha/doublet of copper. The peak heights and the positions, as a function of 2&thgr; where &thgr; is the Bragg angle, were read from the relative intensities of the peaks, and d, the interplanar spacing in Angstroms corresponding to the recorded lines, can be calculated.

The variation in the scattering angle (two theta) measurements, due to instrument error and to differences between individual samples, is estimated at ± 0.20 degrees.

The X-ray diffraction pattern of Table I is representative of "as-synthesized" or "as-made" SSZ-60 zeolites. Minor variations in the diffraction pattern can result from variations in the silica-to-alumina or silica-to-boron mole ratio of the particular sample due to changes in lattice constants. In addition, sufficiently small crystals will affect the shape and intensity of peaks, leading to significant peak broadening.

Representative peaks from the X-ray diffraction pattern of calcined SSZ-60 are shown in Table II. Calcination can also result in changes in the intensities of the peaks as compared to patterns of the "as-made" material, as well as minor shifts in the diffraction pattern. The zeolite produced by exchanging the metal or other cations present in the zeolite with various other cations (such as H+ or NH4 +) yields essentially the same diffraction pattern, although again, there may be minor shifts in the interplanar spacing and variations in the relative intensities of the peaks. Notwithstanding these minor perturbations, the basic crystal lattice remains unchanged by these treatments.

Crystalline SSZ-60 can be used as-synthesized, but preferably will be thermally treated (calcined). Usually, it is desirable to remove the alkali metal cation by ion exchange and replace it with hydrogen, ammonium, or any desired metal ion. The zeolite can be leached with chelating agents, e.g., EDTA or dilute acid solutions, to increase the silica to alumina mole ratio. The zeolite can also be steamed; steaming helps stabilize the crystalline lattice to attack from acids.

The zeolite can be used in intimate combination with hydrogenating components, such as tungsten, vanadium molybdenum, rhenium, nickel cobalt, chromium, manganese, or a noble metal, such as palladium or platinum, for those applications in which a hydrogenation-dehydrogenation function is desired.

Metals may also be introduced into the zeolite by replacing some of the cations in the zeolite with metal cations via standard ion exchange techniques (see, for example, U.S. Patent Nos. 3,140,249 issued July 7, 1964 to Plank et al. ; 3,140,251 issued July 7, 1964 to Plank et al. ; and 3,140,253 issued July 7, 1964 to Plank et al. ). Typical replacing cations can include metal cations, e.g., rare earth, Group IA, Group IIA and Group VIII metals, as well as their mixtures. Of the replacing metallic cations, cations of metals such as rare earth, Mn, Ca, Mg, Zn, Cd, Pt, Pd, Ni, Co, Ti, Al, Sn, and Fe are particularly preferred.

The hydrogen, ammonium, and metal components can be ion-exchanged into the SSZ-60. The zeolite can also be impregnated with the metals, or, the metals can be physically and intimately admixed with the zeolite using standard methods known to the art.

Typical ion-exchange techniques involve contacting the synthetic zeolite with a solution containing a salt of the desired replacing cation or cations. Although a wide variety of salts can be employed, chlorides and other halides, acetates, nitrates, and sulfates are particularly preferred. The zeolite is usually calcined prior to the ion-exchange procedure to remove the organic matter present in the channels and on the surface, since this results in a more effective ion exchange. Representative ion exchange techniques are disclosed in a wide variety of patents including U.S. Patent Nos. 3,140,249 issued on July 7, 1964 to Plank et al. ; 3,140,251 issued on July 7, 1964 to Plank et al. ; and 3,140,253 issued on July 7, 1964 to Plank et al.

Following contact with the salt solution of the desired replacing cation, the zeolite is typically washed with water and dried at temperatures ranging from 65°C to about 200°C. After washing, the zeolite can be calcined in air or inert gas at temperatures ranging from about 200°C to about 800°C for periods of time ranging from 1 to 48 hours, or more, to produce a catalytically active product especially useful in hydrocarbon conversion processes.

Regardless of the cations present in the synthesized form of SSZ-60, the spatial arrangement of the atoms which form the basic crystal lattice of the zeolite remains essentially unchanged.

SSZ-60 can be formed into a wide variety of physical shapes. Generally speaking, the zeolite can be in the form of a powder, a granule, or a molded product, such as extrudate having a particle size sufficient to pass through a 2-mesh (Tyler) screen and be retained on a 400-mesh (Tyler) screen. In cases where the catalyst is molded, such as by extrusion with an organic binder, the aluminosilicate can be extruded before drying, or, dried or partially dried and then extruded.

SSZ-60 can be composited with other materials resistant to the temperatures and other conditions employed in organic conversion processes. Such matrix materials include active and inactive materials and synthetic or naturally occurring zeolites as well as inorganic materials such as clays, silica and metal oxides. Examples of such materials and the manner in which they can be used are disclosed in U.S. Patent No. 4,910,006, issued May 20,1990 to Zones et al. , and U.S. Patent No. 5,316,753, issued May 31, 1994 to Nakagawa .

Hydrocarbon Conversion Processes

SSZ-60 zeolites are useful in hydrocarbon conversion reactions. Hydrocarbon conversion reactions are chemical and catalytic processes in which carbon containing compounds are changed to different carbon containing compounds. Examples of hydrocarbon conversion reactions in which SSZ-60 are expected to be useful include hydrocracking, dewaxing, catalytic cracking and olefin and aromatics formation reactions. The catalysts are also expected to be useful in other petroleum refining and hydrocarbon conversion reactions such as isomerizing n-paraffins and naphthenes, polymerizing and oligomerizing olefinic or acetylenic compounds such as isobutylene and butene-1, reforming, isomerizing polyalkyl substituted aromatics (e.g., in-xylene), and disproportionating aromatics (e.g., toluene) to provide mixtures of benzene, xylenes and higher methylbenzenes and oxidation reactions. Also included are rearrangement reactions to make various naphthalene derivatives, and forming higher molecular weight hydrocarbons from lower molecular weight hydrocarbons (e.g., methane upgrading). The SSZ-60 catalysts may have high selectivity, and under hydrocarbon conversion conditions can provide a high percentage of desired products relative to total products.

SSZ-60 zeolites can be used in processing hydrocarbonaceous feedstocks. Hydrocarbonaceous feedstocks contain carbon compounds and can be from many different sources, such as virgin petroleum fractions, recycle petroleum fractions, shale oil, liquefied coal, tar sand oil, synthetic paraffins from NAO, recycled plastic feedstocks and, in general, can be any carbon containing feedstock susceptible to zeolitic catalytic reactions. Depending on the type of processing the hydrocarbonaceous feed is to undergo, the feed can contain metal or be free of metals, it can also have high or low nitrogen or sulfur impurities. It can be appreciated, however, that in general processing will be more efficient (and the catalyst more active) the lower the metal, nitrogen, and sulfur content of the feedstock.

The conversion of hydrocarbonaceous feeds can take place in any convenient mode, for example, in fluidized bed, moving bed, or fixed bed reactors depending on the types of process desired. The formulation of the catalyst particles will vary depending on the conversion process and method of operation.

Other reactions which can be performed using the catalyst of this invention containing a metal, e.g., a Group VIII metal such platinum, include hydrogenation-dehydrogenation reactions, denitrogenation and desulfurization reactions.

The following table indicates typical reaction conditions which may be employed when using catalysts comprising SSZ-60 in the hydrocarbon.conversion reactions of this invention. Preferred conditions are indicated in parentheses. Process Temp.,°C Pressure LHSV Hydrocracking 175-485 0.5-350 bar 0.1-30 Dewaxing 200-475 15-3000 psig, 0.1-20 (250-450) 0.103-20.7 MPa (0.2-10) gauge (200-3000, 1.38- 20.7 MPa gauge) Aromatics formation 400-600 (480-550) atm.-10 bar 0.1-15 Cat. Cracking 127-885 subatm.-1 0.5-50 (atm.-5 atm.) Oligomerization 232-6492 0.1-50 atm.2,3 0.2-502 10-2324 - 0.05-205 (27-204)4 - (0.1-10)5 Paraffins to 100-700 0-1000 psig, 0- 0.5-405 aromatics 6.89 MPa gauge Condensation of 260-538 0.5-1000 psig, 0.5-505 alcohols 0.00345-6.89 MPa gauge Isomerization 93-538 50-1000 psig, 1-10 (204-315) 0.345-6.89 MPa (1-4) gauge Xylene 260-5932 0.5-50 atm.2 0.1-1005 isomerization (315-566)2 (1-5 atm)2 (0.5-50)5 38-3714 1-200 atm.4 0.5-50 1 Several hundred atmospheres (1 atm = 101 kPa)

2 Gas phase reaction

3 Hydrocarbon partial pressure

4 Liquid phase reaction

5 WHSV

Other reaction conditions and parameters are provided below.

Hydrocracking

Using a catalyst which comprises SSZ-60, preferably predominantly in the hydrogen form, and a hydrogenation promoter, heavy petroleum residual feedstocks, cyclic stocks and other hydrocrackate charge stocks can be hydrocracked using the process conditions and catalyst components disclosed in the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 .

The hydrocracking catalysts contain an effective amount of at least one hydrogenation component of the type commonly employed in hydrocracking catalysts. The hydrogenation component is generally selected from the group of hydrogenation catalysts consisting of one or more metals of Group VIB and Group VIII, including the salts, complexes and solutions containing such. The hydrogenation catalyst is preferably selected from the group of metals, salts and complexes thereof of the group consisting of at least one of platinum, palladium, rhodium, iridium, ruthenium and mixtures thereof or the group consisting of at least one of nickel, molybdenum, cobalt, tungsten, titanium, chromium and mixtures thereof. Reference to the catalytically active metal or metals is intended to encompass such metal or metals in the elemental state or in some form such as an oxide, sulfide, halide, carboxylate and the like. The hydrogenation catalyst is present in an effective amount to provide the hydrogenation function of the hydrocracking catalyst, and preferably in the range of from 0.05 to 25% by weight.

Dewaxing

SSZ-60, preferably predominantly in the hydrogen form, can be used to dewax hydrocarbonaceous feeds by selectively removing straight chain paraffins. Typically, the viscosity index of the dewaxed product is improved (compared to the waxy feed) when the waxy feed is contacted with SSZ-60 under isomerization dewaxing conditions.

The catalytic dewaxing conditions are dependent in large measure on the feed used and upon the desired pour point. Hydrogen is preferably present in the reaction zone during the catalytic dewaxing process. The hydrogen to feed ratio is typically between about 0.089 to 5.34 SCM (standard cubic metres)/liter (500 and about 30,000 SCF/bbl (standard cubic feet per barrel) preferably about 0.178 to 3.56 SCM/liter (1000 to about 20,000 SCF/bbl). Generally, hydrogen will be separated from the product and recycled to the reaction zone. Typical feedstocks include light gas oil, heavy gas oils and reduced crudes boiling above about 177°C (350°F).

A typical dewaxing process is the catalytic dewaxing of a hydrocarbon oil feedstock boiling above about 177°C (350°F) and containing straight chain and slightly branched chain hydrocarbons by contacting the hydrocarbon oil fe tock in the presence of added hydrogen gas at a hydrogen pressure of about 0.103-20.7 MPa (15-3000 psi) with a catalyst comprising SSZ-60 and at least one Group VIII metal.

The SSZ-60 hydrodewaxing catalyst may optionally contain a hydrogenation component of the type commonly employed in dewaxing catalysts. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for examples of these hydrogenation components.

The hydrogenation component is present in an effective amount to provide an effective hydrodewaxing and hydroisomerization catalyst preferably in the range of from about 0.05 to 5% by weight. The catalyst may be run in such a mode to increase isodewaxing at the expense of cracking reactions.

The feed may be hydrocracked, followed by dewaxing. This type of two stage process and typical hydrocracking conditions are described in U.S. Patent No. 4,921,594, issued May 1, 1990 to Miller .

SSZ-60 may also be utilized as a dewaxing catalyst in the form of a layered catalyst. That is, the catalyst comprises a first layer comprising zeolite SSZ-60 and at least one Group VIII metal, and a second layer comprising an aluminosilicate zeolite which is more shape selective than zeolite SSZ-60. The use of layered catalysts is disclosed in U.S. Patent No. 5,149,421, issued September 22, 1992 to Miller .

The layering may also include a bed of SSZ-60 layered with a non-zeolitic component designed for either hydrocracking or hydrofinishing.

SSZ-60 may also be used to dewax raffinates, including bright stock, under conditions such as those disclosed in U. S.Patent No. 4,181,598, issued January 1,1980 to Gillespie et al.

It is often desirable to use mild hydrogenation (sometimes referred to as hydrofinishing) to produce more stable dewaxed products. The hydrofinishing step can be performed either before or after the dewaxing step, and preferably after. Hydrofinishing is typically conducted at temperatures ranging from about 190°C to about 340°C at pressures from about 2.76 MPa gauge (400 psig) to about 20.7 MPa gauge (3000 psig) at space velocities (LHSV) between about 0.1 and 20 and a hydrogen recycle rate of about 0.071 to 0.27 SCM/ liter (400 to 1500 SCF/bbl). The hydrogenation catalyst employed must be active enough not only to hydrogenate the olefins, diolefins and color bodies which may be present, but also to reduce the aromatic content. Suitable hydrogenation catalyst are disclosed in U. S. Patent No. 4,921,594, issued May 1, 1990 to Miller . The hydrofinishing step is beneficial in preparing an acceptably stable product (e.g., a lubricating oil) since dewaxed products prepared from hydrocracked stocks tend to be unstable to air and light and tend to form sludges spontaneously and quickly.

Lube oil may be prepared using SSZ-60. For example, a C20+ lube oil may be made by isomerizing a C20+ olefin feed over a catalyst comprising SSZ-60 in the hydrogen form and at least one Group VIII metal. Alternatively, the lubricating oil may be made by hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing the effluent at a temperature of at least about 204°C (400°F) and at a pressure of from about 0.103 MPa gauge (15 psig) to about 20.7 MPa gauge (3000 psig) in the presence of added hydrogen gas with a catalyst comprising SSZ-60 in the hydrogen form and at least one Group VIII metal.

Aromatics Formation

SSZ-60 can be used to convert light straight run naphthas and similar mixtures to highly aromatic mixtures. Thus, normal and slightly branched chained hydrocarbons, preferably having a boiling range above about 40°C and less than about 200°C, can be converted to products having a substantial higher octane aromatics content by contacting the hydrocarbon feed with a catalyst comprising SSZ-60. It is also possible to convert heavier feeds into BTX or naphthalene derivatives of value using a catalyst comprising SSZ-60.

The conversion catalyst preferably contains a Group VIII metal compound to have sufficient activity for commercial use. By Group VIII metal compound as used herein is meant the metal itself or a compound thereof. The Group VIII noble metals and their compounds, platinum, palladium, and iridium, or combinations thereof can be used. Rhenium or tin or a mixture thereof may also be used in conjunction with the Group VIII metal compound and preferably a noble metal compound. The most preferred metal is platinum. The amount of Group VIII metal present in the conversion catalyst should be within the normal range of use in reforming catalysts, from about 0.05 to 2.0 weight percent, preferably 0.2 to 0.8 weight percent.

It is critical to the selective production of aromatics in useful quantities that the conversion catalyst be substantially free of acidity, for example, by neutralizing the zeolite with a basic metal, e.g., alkali metal, compound. Methods for rendering the catalyst free of acidity are known in the art. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a description of such methods.

The preferred alkali metals are sodium, potassium, rubidium and cesium. The zeolite itself can be substantially free of acidity only at very high silica:alumina mole ratios.

Catalytic Cracking

Hydrocarbon cracking stocks can be catalytically cracked in the absence of hydrogen using SSZ-60, preferably predominantly in the hydrogen form.

When SSZ-60 is used as a catalytic cracking catalyst in the absence of hydrogen, the catalyst may be employed in conjunction with traditional cracking catalysts, e.g., any aluminosilicate heretofore employed as a component in cracking catalysts. Typically, these are large pore, crystalline aluminosilicates. Examples of these traditional cracking catalysts are disclosed in the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No 5,316,753 . When a traditional cracking catalyst (TC) component is employed, the relative weight ratio of the TC to the SSZ-60 is generally between about 1:10 and about 500:1, desirably between about 1:10 and about 200:1, preferably between about 1:2 and about 50:1, and most preferably is between about 1:1 and about 20:1. The novel zeolite and/or the traditional cracking component may be further ion exchanged with rare earth ions to modify selectivity.

The cracking catalysts are typically employed with an inorganic oxide matrix component. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for examples of such matrix components.

Isomerization

The present catalyst is highly active and highly selective for isomerizing C4 to C7 hydrocarbons. The activity means that the catalyst can operate at relatively low temperature which thermodynamically favors highly branched paraffins. Consequently, the catalyst can produce a high octane product. The high selectivity means that a relatively high liquid yield can be achieved when the catalyst is run at a high octane.

The present process comprises contacting the isomerization catalyst, i.e., a catalyst comprising SSZ-60 in the hydrogen form, with a hydrocarbon feed under isomerization conditions. The feed is preferably a light straight run fraction, boiling within the range of -1°C to 121°C (30°F to 250°F) and preferably from 16°C to 93°C (60°F to 200°F). Preferably, the hydrocarbon feed for the process comprises a substantial amount of C4 to C7 normal and slightly branched low octane hydrocarbons, more preferably C5 and C6 hydrocarbons.

It is preferable to carry out the isomerization reaction in the presence of hydrogen. Preferably, hydrogen is added to give a hydrogen to hydrocarbon ratio (H2/HC) of between 0.5 and 10 H2/HC, more preferably between 1 and 8 H2/HC. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of isomerization process conditions.

A low sulfur feed is especially preferred in the present process. The feed preferably contains less than 10 ppm, more preferably less than 1 ppm, and most preferably less than 0.1 ppm sulfur. In the case of a feed which is not already low in sulfur, acceptable levels can be reached by hydrogenating the feed in a presaturation zone with a hydrogenating catalyst which is resistant to sulfur poisoning. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of this hydrodesulfurization process.

It is preferable to limit the nitrogen level and the water content of the feed. Catalysts and processes which are suitable for these purposes are known to those skilled in the art.

After a period of operation, the catalyst can become deactivated by sulfur or coke. See-the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of methods of removing this sulfur and coke, and of regenerating the catalyst.

The conversion catalyst preferably contains a Group VIII metal compound to have sufficient activity for commercial use. By Group VIII metal compound as used herein is meant the metal itself or a compound thereof. The Group VIII noble metals and their compounds, platinum, palladium, and iridium, or combinations thereof can be used. Rhenium and tin may also be used in conjunction with the noble metal. The most preferred metal is platinum. The amount of Group VIII metal present in the conversion catalyst should be within the normal range of use in isomerizing catalysts, from about 0.05 to 2.0 weight percent, preferably 0.2 to 0.8 weight percent.

Alkylation and Transalkylation

SSZ-60 can be used in a process for the alkylation or transalkylation of an aromatic hydrocarbon. The process comprises contacting the aromatic hydrocarbon with a C2 to C16 olefin alkylating agent or a polyalkyl aromatic hydrocarbon transalkylating agent, under at least partial liquid phase conditions, and in the presence of a catalyst comprising SSZ-60.

SSZ-60 can also be used for removing benzene from gasoline by alkylating the benzene as described above and removing the alkylated product from the gasoline.

For high catalytic activity, the SSZ-60 zeolite should be predominantly in its hydrogen ion form. It is preferred that, after calcination, at least 80% of the cation sites are occupied by hydrogen ions and/or rare earth ions.

Examples of suitable aromatic hydrocarbon feedstocks which may be alkylated or transalkylated by the process of the invention include aromatic compounds such as benzene, toluene and xylene. The preferred aromatic hydrocarbon is benzene. There may be occasions where naphthalene or naphthalene derivatives such as dimethylnaphthalene may be desirable. Mixtures of aromatic hydrocarbons may also be employed.

Suitable olefins for the alkylation of the aromatic hydrocarbon are those containing 2 to 20, preferably 2 to 4, carbon atoms, such as ethylene, propylene, butene-1, trans-butene-2 and cis-butene-2, or mixtures thereof. There may be instances where pentenes are desirable. The preferred olefins are ethylene and propylene. Longer chain alpha olefins may be used as well.

When transalkylation is desired, the transalkylating agent is a polyalkyl aromatic hydrocarbon containing two or more alkyl groups that each may have from 2 to about 4 carbon atoms. For example, suitable polyalkyl aromatic hydrocarbons include di-, tri- and tetra-alkyl aromatic hydrocarbons, such as diethylbenzene, triethylbenzene, diethylmethylbenzene (diethyltoluene), di-isopropylbenzene, di-isopropyltoluene, dibutylbenzene, and the like. Preferred polyalkyl aromatic hydrocarbons are the dialkyl benzenes. A particularly preferred polyalkyl aromatic hydrocarbon is di-isopropylbenzene.

When alkylation is the process conducted, reaction conditions are as follows. The aromatic hydrocarbon feed should be present in stoichiometric excess. It is preferred that molar ratio of aromatics to olefins be greater than four-to-one to prevent rapid catalyst fouling. The reaction temperature may range from 38°C (100°F) to 316°C (600°F), preferably 121°C (250°F) to 232°C (450°F). The reaction pressure should be sufficient to maintain at least a partial liquid phase in order to retard catalyst fouling. This is typically 0.345 MPa gauge (50 psig) to 6.89 MPa gauge (1000 psig) depending on the feedstock and reaction temperature. Contact time may range from 10 seconds to 10 hours, but is usually from 5 minutes to an hour. The weight hourly space velocity (WHSV), in terms of grams (pounds) of aromatic hydrocarbon and olefin per gram (pound) of catalyst per hour, is generally within the range of about 0.5 to 50.

When transalkylation is the process conducted, the molar ratio of aromatic hydrocarbon will generally range from about 1:1 to 25:1, and preferably from about 2:1 to 20:1. The reaction temperature may range from about 38°C to 316°C (100°F to 600°F), but it is preferably about 121°C to 232°C (250°F to 450°F). The reaction pressure should be sufficient to maintain at least a partial liquid phase, typically in the range of about 0.345 MPa gauge (50 psig) to 6.89 MPa gauge (1000 psig) preferably 2.07 MPa gauge (300 psig) to 4.14 MPa gauge (600 psig). The weight hourly space velocity will range from about 0.1 to 10. U.S. Patent No. 5,082,990 issued on January 21, 1992 to Hsieh, et al. describes such processes.

Conversion of Paraffins to Aromatics

SSZ-60 can be used to convert light gas C2-C6 paraffins to higher molecular weight hydrocarbons including aromatic compounds. Preferably, the zeolite will contain a catalyst metal or metal oxide wherein said metal is selected from the group consisting of Groups IB, IIB, VIII and IIIA of the Periodic Table. Preferably, the metal is gallium, niobium, indium or zinc in the range of from about 0.05 to 5% by weight

Xylene Isomerization

SSZ-60 may also be useful in a process for isomerizing one or more xylene isomers in a C8 aromatic feed to obtain ortho-, meta-, and para-xylene in a ratio approaching the equilibrium value. In particular, xylene isomerization is used in conjunction with a separate process to manufacture para-xylene. For example, a portion of the para-xylene in a mixed C8 aromatics stream may be recovered by crystallization and centrifugation. The mother liquor from the crystallizer is then reacted under xylene isomerization conditions to restore ortho-, meta- and para-xylenes to a near equilibrium ratio. At the same time, part of the ethylbenzene in the mother liquor is converted to xylenes or to products which are easily separated by filtration. The isomerate is blended with fresh feed and the combined stream is distilled to remove heavy and light byproducts. The resultant C8 aromatics stream is then sent to the crystallizer to repeat the cycle.

Optionally, isomerization in the vapor phase is conducted in the presence of 3.0 to 30.0 moles of hydrogen per mole of alkylbenzene (e.g., ethylbenzene). If hydrogen is used, the catalyst should comprise about 0.1 to 2.0 wt.% of a hydrogenation/dehydrogenation component selected from Group VIII (of the Periodic Table) metal component, especially platinum or nickel. By Group VIII metal component is meant the metals and their compounds such as oxides and sulfides.

Optionally, the isomerization feed may contain 10 to 90 wt. of a diluent such as toluene, trimethylbenzene, naphthenes or paraffins.

Oligomerization

It is expected that SSZ-60 can also be used to oligomerize straight and branched chain olefins having from about 2 to 21 and preferably 2-5 carbon, atoms. The oligomers which are the products of the process are medium to heavy olefins which are useful for both fuels, i.e., gasoline or a gasoline blending stock and chemicals.

The oligomerization process comprises contacting the olefin feedstock in the gaseous or liquid phase with a catalyst comprising SSZ-60.

The zeolite can have the original cations associated therewith replaced by a wide variety of other cations according to techniques well known in the.art. Typical cations would include hydrogen, ammonium and metal cations including mixtures of the same-Of the replacing metallic cations, particular preference is given to cations of metals such as rare earth metals, manganese, calcium, as well as metals of Group II of the Periodic Table, e.g., zinc, and Group VIII of the Periodic Table, e.g., nickel. One of the prime requisites is that the zeolite have a fairly low aromatization activity, i.e., in which the amount of aromatics produced is not more than about 20% by weight. This is accomplished by using a zeolite with controlled acid activity [alpha value] of from about 0:1 to about 120, preferably from about 0.1 to about 100, as measured by its ability to crack n-hexane.

Alpha values are defined by a standard test known in the art, e.g., as shown in U.S. Patent No. 3,960,978 issued on June 1, 1976 to Givens et al.

If required, such zeolites may be obtained by steaming, by use in a conversion process or by any other method which may occur to one skilled in this art.

Condensation of Alcohols

SSZ-60 can be used to condense lower aliphatic alcohols having 1 to 10 carbon atoms to a gasoline boiling point hydrocarbon product comprising mixed aliphatic and aromatic hydrocarbon. The process disclosed in U.S. Patent No. 3,894,107, issued July 8, 1975 to Butter et al., describes the process conditions used in this process.

The catalyst may be in the hydrogen form or may be base exchanged or impregnated to contain ammonium or a metal cation complement, preferably in the range of from about 0.05 to 5% by weight. The metal cations that may be present include any of the metals of the Groups I through VIII of the Periodic Table. However, in the case of Group IA metals, the cation content should in no case be so large as to effectively inactivate the catalyst, nor should the exchange be such as to eliminate all acidity. There may be other processes involving treatment of oxygenated substrates where a basic catalyst is desired.

Methane Upgrading

Higher molecular weight hydrocarbons can be formed from lower molecular weight hydrocarbons by contacting the lower molecular weight hydrocarbon with a catalyst comprising SSZ-60 and a metal or metal compound capable of converting the lower molecular weight hydrocarbon to a higher molecular weight hydrocarbon. Examples of such reactions include the conversion of methane to C2+ hydrocarbons such as ethylene or benzene or both. Examples of useful metals and metal compounds include lanthanide and or actinide metals or metal compounds.

These reactions, the metals or metal compounds employed and the conditions under which they can be run are disclosed in U.S. Patents No. 4,734,537, issued March 29, 1988 to Devries et al. ; 4,939,311, issued July 3, 1990 to Washecheck et al. ; 4,962,261, issued October 9, 1990 to Abrevaya et al. ; 5,095,161, issued March 10, 1992 to Abrevaya et al. ; 5,105,044, issued April 14, 1992 to Han et al. ; 5,105,046, issued April 14, 1992 to Washecheck ; 5,238,898, issued August 24, 1993 to Han et al. ; 5,321,185, issued June 14, 1994 to van der Vaart ; and 5,336,825, issued August 9, 1994 to Choudhary et al.

SSZ-60 can also be used as an adsorbent with high selectivities based on molecular sieve behavior and also based upon preferential hydrocarbon packing within the pores.

SSZ-60 may be used for the catalytic reduction of the oxides of nitrogen in a gas stream. Typically, the gas stream also contains oxygen, often a stoichiometric excess thereof. Also, the SSZ-60 may contain a metal or metal ions within or on it which are capable of catalyzing the reduction of the nitrogen oxides. Examples of such metals or metal ions include copper, cobalt and mixtures thereof.

One example of such a process for the catalytic reduction of oxides of nitrogen in the presence of a zeolite is disclosed in U.S. Patent No. 4,297,328, issued October 27, 1981 to Ritscher et al. There, the catalytic process is the combustion of carbon monoxide and hydrocarbons and the catalytic reduction of the oxides of nitrogen contained in a gas stream, such as the exhaust gas from an internal combustion engine. The zeolite used is metal ion-exchanged, doped or loaded sufficiently so as to provide an effective amount of catalytic copper metal or copper ions within or on the zeolite. In addition, the process is conducted in an excess of oxidant, e.g., oxygen.

EXAMPLES

The following examples demonstrate but do not limit the present invention. The templating agents indicated in Table C below are used in these examples.

TABLE C

N-Ethyl-N-(3,3,5-trimethyleyclohexyl)pyrrolidinium cation

N-Ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation

The anion (X-) associated with the cation may be any anion which is not detrimental to the formation of the zeolite. Representative anions include halogen, e.g., fluoride, chloride, bromide and iodide, hydroxide, acetate, sulfate, tetrafluoroborate, carboxylate, and the like. Hydroxide is the most preferred anion.

Example 1 Synthesis of N-Ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium cation (Template A) Synthesis of N-(3,3,5-trimethylcyclohexyl)pyrrolidine

The structure-directing agent (SDA) was synthesized using the reaction sequence described in the scheme bellow.

Synthesis of the parent amine N-(3,3,5-trimethylcyclohexyl)pyrrolidine

In a 3-liter three neck flask a 150 g (2.13 mole) of pyrrolidine, 100 g of 3,5,5-trimethylcyclohexanone (0.71 mole) were mixed in a and 1500 ml anhydrous hexane. To the resulting solution, 150 g (1.25 mole) of anhydrous magnesium sulfate were added and the mixture was mechanically stirred and heated at reflux (the reaction was monitored by NMR analysis) for 132 hrs. The reaction mixture was filtered through a fritted glass funnel. The filtrate was concentrated under reduced pressure on a rotary evaporator to give 133 g of an isomeric mixture of the desired enamine as was indicated by 1H-NMR and 13C-NMR analysis [(3,3,5-trimethylcyclohex-enyl)pyrrolidine and (3,3,5-trimethylcyclohex-enyl)pyrrolidine]. Saturation of the enamine mixture, to give N-(3,5,5-trimethylcyclohexyl)pyrrolidine, was accomplished in quantitative yield by hydrogenation in ethanol at a 0.379 MPa (55 psi) pressure of hydrogen gas in the presence of 10% Pd on activated carbon.

Ouaternization of N-(3,3,5-trimethylcyclohexyl)pyrrolidine (Synthesis of N-ethyl-N-(3,3,5-trimethycyclohexyl)pyrrolidinium Iodide)

To a solution of 131 g (0.67 mole) of N-(3,3,5-trimethylcyclohexyl)pyrrolidine in 1000 ml anhydrous methanol, 210 g (1.34 mole) of ethyl iodide were added. The reaction was mechanically stirred for 3 days at room temperature. Then, an additional equivalent of ethyl iodide and one equivalent (67.7 g; 0.0.67 mole) of potassium bicarbonate were added and the reaction was stirred at refluxing temperature for 72 hrs. The reaction mixture was concentrated under reduced pressure on a rotary evaporator to give an off-white-colored solid material. The solids were rinsed several times with chloroform and filtered after each rinse. All the chloroform rinses were combined and concentrated to give a white powder whose NMR data were acceptable for the desired quaternary ammonium iodide salt. The reaction afforded 218g (93% yield) of the product. The iodide salt was purified by re-crystallization in acetone and ether. This was done by completely dissolving the iodide salt in acetone and, then, the precipitation of the product was facilitated by addition of ethyl ether to the acetone solution. Re-crystallization gave 211 g of the product as white powder (pure by 1H and 13C-NMR NMR analysis).

Ion Exchange (Synthesis of N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium Hydroxide)

To a solution of N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium iodide salt (100 g; 0.285 mole) in 350 ml water in a 1-liter plastic bottle, To the solution, 340 g of Ion-Exchange Resin-OH (BIO RAD® AH1-X8) were added and the mixture was gently stirred at room temperature overnight. The mixture was filtered and the solids were rinsed with additional 75 ml of water. Titration analysis with 0.1N HCl gave a total yield of 0.215 mole of hydroxide ions (0.215 mole N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium hydroxide).

Example 2 Synthesis of N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation (Template B)

N-ethyl-N-(2,4,4,-trimethylcyclopentyl)pyrrolidinium cation was synthesized using the synthetic scheme described above starting from pyrrolidine and 2,4,4-trimethylcyclopentanone.

Example 3 Typical Preparation of Borosilicate SSZ-60 Starting SiO 2 /B 2 O 3 =46

In a 23-in Teflon liner, 5.93 g of 0.50 M solution (aqueous) of the templating agent N-ethyl-N-(3,3,5-trimethycyclohexyl)pyrrolidinium hydroxide (3 mmol) were mixed with 1.2 g of 1.0N NaOH (1.2 mmol) and 4.9 g of de-ionized water. To this mixture, 0.06 g of sodium borate decahydrate were added and stirred until completely dissolved. To this mixture, 0.9 g of CABOSIL-M-5(SiO2) were added. The mixture was thoroughly stirred and the resulting gel was capped off and placed in steel Parr autoclave and heated in an oven at 160°C while tumbling at 43 rpm. The progress of the reaction was monitored by Scanning Electron Microscopy at intervals of 6 days. Once completed, the reaction mixture (a clear liquid and fine solids settled to the bottom) was filtered through a fritted glass funnel. The collected solid was rinsed with water (1 liter) and air-dried overnight. The solids were further dried in an oven at 120°C for 2hrs. The reaction yielded 0.85 g of SSZ-60 as a white powder.

Analysis by XRD shows the product to be SSZ-60. The XRD data appears in Table III below. <u>TABLE III</u> Two Theta d-spacing (Å / × 10-10 m) Intensity I/Io x 100 6.39 13.83 38 7.64 Sh 11.56 24 7.98 11.07 49 10.29 8.588 19 13.40 6.604 6 15.19 5.828 12 17.44 5.080 36 19.30 4.596 36 20.53 4.322 57 21.49 4.132 13 22.36 3.973 100 23.39 3.801 16 24.12 Sh 3.687 18 24.23 3.670 25 25.22 3.528 13 25.95 3.431 15 26.78 Sh 3.327 12 27.16 3.281 27 28.08 3.176 19 29.05 3.071 6 30.72 2.908 6 31.34 2.852 5 32.65 2.740 6 33.63 2.663 5 35.87 2.594 31 37.47 2.502 4 39.58 2.398 4

Example 4 Calcination of SSZ-60

The material from Example 3 is calcined in the following manner. A thin bed of material is heated in a muffle furnace from room temperature to 120°C at a rate of 1°C per minute and held at 120°C for three hours. The temperature is then ramped up to 540°C at the same rate and held at this temperature for 5 hours, after which it is increased to 594°C and held there for another 5 hours. A 50/50 mixture of air and nitrogen is passed over the zeolite at a rate of 566 l/min (20 standard cubic feet per minute) during heating. The X-ray diffraction data for the product is provided in Table IV below. <u>TABLE IV</u> Two Theta (deg.) d-spacing (Å /× 10-10 m) Intensity I/Io x 100 6.36 13.88 100 7.63 Sh 11.58 44 7.98 11.07 76 10.25 8.625 48 15.11 5.860 5 16.12 . 5.495 4 17.47 5.073 10 18.07 4.904 2 19.20 4.620 40 19.70 4.503 2 20.44 4.342 39 22.28 3.987 64 23.32 3.811 15 24.19 3.676 14 25.17 3.536 9 25.86 3.442 12 26.59 3.349 10 27.11 3.286 13 28.00 3.185 6 29.03 3.074 4 30.56 2.923 3 31.32 2.854 5 32.57 2.747 4 33.53 2.671 4 35.70 2.513 18

Table V below shows the results of attempts at making borosilicate SSZ-60 at varying SiO2B2O3 ratios. The results in Table V were obtained using the synthesis of example 3 by varying the amount of Na2B4O7.10H2O while keeping the amount of all other reagent constant. Template A was used as structure directing agent. Table V SiO2/B2O3 XRD Results 0 SSZ-31 280 SSZ-31 140 SSZ-60 93.3 SSZ-60 70 SSZ-60 56 SSZ-60 46.7 SSZ-60 40 SSZ-60 35 SSZ-60 31 SSZ-60 28 SSZ-60 25.5 SSZ-60 23.5 SSZ-60 20 SSZ-60 18.7 SSZ-60 & Cristobalite 15.6 SSZ-60 & Cristobalite 14 SSZ-60 & Cristobalite

Example 5 Conversion of Boron-SSZ-60 to Aluminum-SSZ-60

Boron-SSZ-60 was converted to the more acidic Al-SSZ-60 by treatment with aluminum nitrate ((Al(NO3)3).9H2O) to exchange the boron in the framework of the zeolite with aluminum. Boron-SSZ-60 (as prepared in example 3 and calcined as in example 4) was heated at reflux in a 1.0 molar solution of boron was refluxed in a 1.0 molar solution of Al(NO3)3).9H2O (40 ml/ 1gm zeolite) overnight. The mixture was then filtered and thoroughly rinsed with water. The collected solids were rinsed with 0.05 N HCl and again with water to remove any residual aluminum nitrate. The solids were air-dried overnight and calcined at 540°C for 5 hrs to give the proton form of the aluminum version of SSZ-60.

Example 6 NH 4 Exchange

Ion exchange of calcined SSZ-60 material (prepared in Example 3) is performed using NH4NO3 to convert the zeolite from its Na+ form to the NH4 + form, and, ultimately, the H+ form. Typically, the same mass of NH4NO3 as zeolite is slurried in water at a ratio of 25-50:1 water to zeolite. The exchange solution is heated at 95°C for 2 hours and then filtered. This procedure can be repeated up to three times. Following the final exchange, the zeolite is washed several times with water and dried. This NH4 + form of SSZ-60 can then be converted to the H+ form by calcination (as described in Example 9) to 540°C.

Example 7 Constraint Index Determination

The hydrogen form of the zeolite of Example 3 (after treatment according to Examples 4 and 5) is pelletized at 13790-20684 kN/m2 (2-3 KPSI), crushed and meshed to 0.422-0.853 mm (20-40), and then > 0.50 gram is calcined at about 540°C in air for four hours and cooled in a desiccator. 0.50 Gram is packed into a 9.5 mm (3/8 inch) stainless steel tube with alundurn on both sides of the zeolite bed. A Lindburg furnace is used to heat the reactor tube. Helium is introduced into the reactor tube at 10 m/min. and at atmospheric pressure. The reactor is heated to about 315°C, and a 50/50 (w/w) feed of n-hexane and 3-methylpentane is introduced into the reactor at a rate of 8 µl/min. Feed delivery is made via a Brownlee pump. Direct sampling into a gas chromatograph begins after 10 minutes of feed introduction. The Constraint Index value is calculated from the gas chromatographic data using methods known in the art, and is found to be 0.7, which appears to be constant with time. At 315°C and 10 minutes on-stream, feed conversion was greater than 33%.

Example 8 Hydrocracking of n-Hexadecane

A sample of SSZ-60 as prepared in example 3 was treated as in examples 4 and 5. Then a sample was slurried in water and the pH of the slurry was adjusted to a pH of ~10 with dilute ammonium hydroxide. To the slurry was added a solution of Pd(NH3)4(NO3)2 at a concentration which would provide 0.5 wt. % Pd with respect to the dry weight of the zeolite sample. This slurry was stirred for 48 hours at 100°C. After cooling, the slurry was filtered through a glass frit, washed with de-ionized water, and dried at 100°C. The catalyst was then calcined slowly up to 482°C (900°F) in air and held there for three hours.

The calcined catalyst was pelletized in a Carver Press and crushed to yield particles with a 20/40 mesh size range. Sized catalyst (0.5 g) was packed into a R" OD tubing reactor in a micro unit for n-hexadecane hydroconversion. Table VI gives the run conditions and the products data for the hydrocracking test on n-hexadecane. After the catalyst was tested with n-hexadecane, it was titrated using a solution of butyl amine in hexane. The temperature was increased and the conversion and product data evaluated again under titrated conditions. The results shown in Table VI show that SSZ-60 is effective as a hydrocracking catalyst. <u>Table VI</u> Temperature 315°C (599°F) WHSV 1.55 PSIG (1 PSI = 6.89 kPa) 1200 Titrated? No n-16, % Conversion 99.3 Hydrocracking Conversion, % 70.6 Isomerization Selectivity, % 28.9 C4 -, % 9.3 C5+C6% 20.7 C4 i/n 2.34 C5 i/n 2.67 C6 i/n 2.25 C7 i/n 2.51 C8 i/n 3.32 C9 i/n 3.77 C10 i/n 4.50 C 11 i/n 4.76 C12 i/n 5.65


Anspruch[de]
Zeolith, dessen Molverhältnis von einem Oxid eines ersten vierwertigen Elementes zu einem Oxid eines zweiten vierwertigen Element, das sich von dem ersten vierwertigen Element unterscheidet, eines dreiwertigen Elementes, fünfwertigen Elementes oder eines Gemischs davon, größer als etwa 20 ist und der nach der Kalzinierung die Röntgenbeugungslinien der Tabelle II aufweist: <u>TABELLE II</u> kalzinierter SSZ-60 2 Theta (°)(a) d-Abstand (Å/×10-10m) relative Intensität(b) 6,4 13,8 VS 7,6 11,6 S 8,0 11,0 VS 10,25 8,62 S 15,1 5,86 W 17,5 5,06 W 19,2 4,62 M 20,4 4,35 M 22,3 3,98 S 24,2 3,67 W 27,1 3,29 W 28,0 3,18 W 35,7 2,51 W (a) ± 0,2
Zeolith nach Anspruch 1, dessen Molverhältnis von einem Oxid, ausgewählt aus der Gruppe Siliciumoxid, Germaniumoxid und Gemischen davon, zu einem Oxid, ausgewählt aus Aluminiumoxid, Galliumoxid, Eisenoxid, Boroxid, Titanoxid, Indiumoxid, Vanadiumoxid und Gemischen davon, größer als etwa 20 ist, und der nach der Kalzinierung die Röntgenbeugungslinien von Tabelle II aufweist. Zeolith nach Anspruch 2, wobei die Oxide Siliciumoxid und Aluminiumoxid umfassen. Zeolith nach Anspruch 2, wobei die Oxide Siliciumoxid und Boroxid umfassen. Zeolith nach Anspruch 1, welcher vorwiegend in der Wasserstoffform vorliegt. Zeolith nach Anspruch 1, welcher im Wesentlichen keine Azidität aufweist. Zeolith nach Anspruch 1 oder 2 mit einer Zusammensetzung, wie synthetisiert und im wasserfreien Zustand, ausgedrückt als Molverhältnisse wie folgt: YO2/Wc-Od >20 M2/n/YO2 0,01 - 0,03 Q/YO2 0,02 - 0,05
wobei Y Silicium, Germanium oder ein Gemisch davon ist, W Aluminium, Gallium, Eisen, Bor, Titan, Indium, Vanadium oder Gemische davon ist, c gleich 1 oder 2 ist, d gleich 2 ist, wenn c gleich 1 ist oder d gleich 3 oder 5 ist, wenn c gleich 2 ist; M ein Alkalimetallkation, Erdalkalimetallkation oder Gemische davon ist; n die Wertigkeit von M angibt; und Q ein N-Ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium-Kation oder N-Ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium-Kation ist.
Zeolith nach Anspruch 7, wobei W Aluminium und Y Silicium ist. Zeolith nach Anspruch 7, wobei W Bor und Y Silicium ist. Zeolith nach Anspruch 7, wobei Q ein N-Ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium-Kation ist. Zeolith nach Anspruch 7, wobei Q ein N-Ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium-Kation ist. Verfahren zur Herstellung des Zeoliths nach Anspruch 1 oder 2, umfassend das Zusammenbringen von Quellen für diese Oxide und einem Matrizenmittel, welches ein N-Ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium-Kation oder N-Ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium-Kation umfasst, unter Kristallisationsbedingungen. Verfahren nach Anspruch 12, wobei das erste vierwertige Element ausgewählt ist aus Silicium, Germanium und Kombinationen davon. Verfahren nach Anspruch 12, wobei das zweite vierwertige, dreiwertige oder fünfwertige Element ausgewählt ist aus Aluminium, Gallium, Eisen, Bor, Titan, Indium, Vanadium und Kombinationen davon. Verfahren nach Anspruch 14, wobei das zweite vierwertige Element oder das dreiwertige Element ausgewählt ist aus Aluminium, Bor, Titan und Kombinationen davon. Verfahren nach Anspruch 15, wobei das erste vierwertige Element Silicium ist. Verfahren nach Anspruch 12, wobei das Matrizenmittel ein N-Ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium-Kation ist. Verfahren nach Anspruch 12, wobei das Matrizenmittel ein N-Ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium-Kation ist. Verfahren zum Umwandeln von Kohlenwasserstoffen, umfassend das Zusammenbringen einer Kohlenwasserstoff-Beschickung mit einem Katalysator, welcher den Zeolithen nach Anspruch 1 oder 2 umfasst, unter Kohlenwasserstoff-Umwandlungsbedingungen. Verfahren nach Anspruch 19, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 19, wobei der Zeolith im Wesentlichen keine Azidität aufweist. Verfahren nach Anspruch 19, nämlich ein Hydrocrack-Verfahren, umfassend das Zusammenbringen des Katalysators mit einer Kohlenwasserstoff-Beschickung unter Hydrocrackbedingungen. Verfahren nach Anspruch 22, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 19, nämlich ein Entwachsungsverfahren, umfassend das Zusammenbringen des Katalysators mit einer Kohlenwasserstoff-Beschickung unter Entwachsungsbedingungen. Verfahren nach Anspruch 24, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Verbessern des Viskositätsindexes eines entwachsten Produktes wachsartiger Kohlenwasserstoff-Beschickungen, umfassend das Zusammenbringen des Katalysators mit einer wachsartigen Kohlenwasserstoff-Beschickung unter Isomerisierungs-Entwachsungsbedingungen. Verfahren nach Anspruch 26, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 19, nämlich ein Verfahren zur Herstellung eines C20+-Schmieröls aus einer C20+-Olefinbeschickung, umfassend das Isomerisieren der Olefinbeschickung über dem Katalysator unter Isomerisierungsbedingungen. Verfahren nach Anspruch 28, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 28, wobei der Katalysator zudem mindestens ein Gruppe-VIII-Metall umfasst. Verfahren nach Anspruch 19, nämlich ein Verfahren zum katalytischen Entwachsen einer Kohlenwasserstofföl-Beschickung, die oberhalb von etwa 177°C (350°F) siedet und gerade und leicht verzweigte Kohlenwasserstoffketten enthält, umfassend das Zusammenbringen der Kohlenwasserstofföl-Beschickung mit dem Katalysator in Gegenwart von hinzugefügtem Wasserstoffgas bei einem Wasserstoffdruck von etwa 0,103 - 20,7 MPa (15 - 3000 psi) unter Entwachsungsbedingungen. Verfahren nach Anspruch 31, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 31, wobei der Katalysator zudem mindestens ein Gruppe-VIII-Metall umfasst. Verfahren nach Anspruch 31, wobei der Katalysator einen schichtförmigen Katalysator umfasst mit einer ersten Schicht, welche den Zeolithen und mindestens ein Gruppe-VIII-Metall umfasst, und einer zweiten Schicht, welche einen Aluminosilicat-Zeolithen umfasst, der formselektiver als der Zeolith der ersten Schicht ist. Verfahren nach Anspruch 19, nämlich ein Verfahren zur Herstellung eines Schmieröls, umfassend: Hydrocracken einer Kohlenwasserstoff-Beschickung in einem Hydrocrack-Bereich, so dass ein Ausfluss erhalten wird, der ein Hydrocrack-Öl enthält; und katalytisches Entwachsen des Ausflusses, der das Hydrocrack-Öl enthält, bei einer Temperatur von mindestens etwa 200°C (400°F) und einem Druck von etwa 0,10 bis 20,7 MPa Druckanzeige (15 psig bis etwa 3000 psig) in Gegenwart von hinzu gefügtem Wasserstoffgas, mit dem Katalysator. Verfahren nach Anspruch 35, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 35, wobei der Katalysator zudem mindestens ein Gruppe-VIII-Metall umfasst. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Isomerisierungs-Entwachsen eines Raffinats, umfassend das Zusammenbringen des Raffinats mit dem Katalysator in Gegenwart von zugefügtem Wasserstoff unter Isomerisierungs-Entwachsungsbedingungen. Verfahren nach Anspruch 38, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 38, wobei der Katalysator zudem mindestens ein Gruppe-VIII-Metall umfasst. Verfahren nach Anspruch 38, wobei das Raffinat Brightstock ist. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Erhöhen der Oktanzahl einer Kohlenwasserstoff-Beschickung, so dass ein Produkt mit einem größeren Aromatengehalt erzeugt wird, umfassend das Zusammenbringen einer Kohlenwasserstoff-Beschickung, welche normale und leicht verzweigte Kohlenwasserstoffe mit einem Siedebereich oberhalb von etwa 40°C und unterhalb von etwa 200°C umfasst, mit dem Katalysator unter Aromaten-Umwandlungsbedingungen. Verfahren nach Anspruch 42, wobei der Zeolith im Wesentlichen säurefrei ist. Verfahren nach Anspruch 42, wobei der Katalysator eine Gruppe-VIII-MetallKomponente umfasst. Verfahren nach Anspruch 19, nämlich ein katalytisches Crack-Verfahren, umfassend das Zusammenbringen einer Kohlenwasserstoff-Beschickung mit dem Katalysator in einem Reaktionsbereich unter katalytischen Crackbedingungen in Abwesenheit von zugefügtem Wasserstoff. Verfahren nach Anspruch 45, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 45, wobei der Katalysator zudem eine großporige kristalline Crack-Komponente umfasst. Verfahren nach Anspruch 19, nämlich ein Isomerisierungsverfahren zum Isomerisieren von C4- bis C7-Kohlenwasserstoffen, umfassend das Zusammenbringen einer Beschickung, die normale und leicht verzweigte C4- bis C7-Kohlenwasserstoffe enthält, mit dem Katalysator unter Isomerisierungsbedingungen. Verfahren nach Anspruch 48, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 48, wobei der Zeolith mit mindestens einem Gruppe-VIII-Metall diffusionsbeschichtet ist. Verfahren nach Anspruch 48, wobei der Katalysator nach der Diffusionsbeschichtung mit dem Gruppe-VIII-Metall in einem Dampf-Luft-Gemisch bei erhöhter Temperatur kalziniert wird. Verfahren nach Anspruch 50, wobei das Gruppe-VIII-Metall Platin ist. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Alkylieren eines aromatischen Kohlenwasserstoffes, umfassend das Zusammenbringen von mindestens einem molaren Überschuss eines aromatischen Kohlenwasserstoffes mit einem C2- bis C20-Olefin in Gegenwart des Katalysators unter Alkylierungsbedingungen sowie unter zumindest partiellen Flüssigphase-Bedingungen. Verfahren nach Anspruch 53, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 53, wobei das Olefin ein C2- C4-Olefin ist. Verfahren nach Anspruch 55, wobei der aromatische Kohlenwasserstoff und das Olefin in einem Molverhältnis von etwa 4:1 bis etwa 20:1 vorliegen. Verfahren nach Anspruch 55, wobei der aromatische Kohlenwasserstoff ausgewählt ist aus Benzol, Toluol, Ethylbenzol, Xylol, Naphthalin, NaphthalinDerivaten, Dimethylnaphthalin oder Gemischen davon. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Transalkylieren eines aromatischen Kohlenwasserstoffes, umfassend das Zusammenbringen eines aromatischen Kohlenwasserstoffes mit einem polylalkylaromatischen Kohlenwasserstoff in Gegenwart des Katalysators unter Transalkylierungsbedingungen sowie unter zumindest partiellen Flüssigphase-Bedingungen. Verfahren nach Anspruch 58, wobei der Zeolith vorwiegend in der Wasserstoffform vorliegt. Verfahren nach Anspruch 58, wobei der aromatische Kohlenwasserstoff und der polyalkylaromatische Kohlenwasserstoff in einem Molverhältnis von etwa 1:1 bis zu etwa 25:1 vorliegen. Verfahren nach Anspruch 58, wobei der aromatische Kohlenwasserstoff ausgewählt ist aus Benzol, Toluol, Ethylbenzol, Xylol oder Gemischen davon. Verfahren nach Anspruch 58, wobei der polyalkylaromatische Kohlenwasserstoff ein Dialkylbenzol ist. Verfahren nach Anspruch 19, nämlich ein Verfahren zur Umwandlung von Paraffinen in Aromaten, umfassend das Zusammenbringen von Paraffinen mit einem Katalysator, welcher den Zeolithen und Gallium, Zink oder eine Gallium- oder Zinkverbindung umfasst, unter Bedingungen, bei denen Paraffine in Aromaten umgewandelt werden. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Isomerisieren von Olefinen, umfassend das Zusammenbringen des Olefins mit dem Katalysator unter Bedingungen, die die Isomerisierung des Olefins bewirken. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Isomerisieren einer Isomerisierungsbeschickung, welche einen aromatischen C8-Strom von Xylolisomeren oder Gemischen von Xylolisomeren und Ethylbenzol umfasst, wobei ein Verhältnis von ortho-, meta- und para-Xylolen erhalten wird, das noch näher am Gleichgewicht ist, umfassend das Zusammenbringen der Beschickung mit dem Katalysator unter Isomerisierungsbedingungen. Verfahren nach Anspruch 19, nämlich ein Verfahren zum Oligomerisieren von Olefinen, umfassend das Zusammenbringen einer Olefinbeschickung mit dem Katalysator unter Oligomerisierungsbedingungen. Verfahren zum Umwandeln von Niederalkoholen und anderen oxygenierten Kohlenwasserstoffen, umfassend das Zusammenbringen des Niederalkohols oder des oxygenierten Kohlenwasserstoffs mit einem Katalysator, umfassend den Zeolithen nach Anspruch 1 oder 2, unter Bedingungen, dass flüssige Produkte erhalten werden. Verfahren nach Anspruch 19, nämlich ein Verfahren zur Produktion von höhermolekularen Kohlenwasserstoffen aus niedermolekularen Kohlenwasserstoffen, umfassend die Schritte: (a) Einführen eines niedermolekularen kohlenwasserstoffhaltigen Gases in einen Reaktionsbereich, und Zusammenbringen des Gases in dem Bereich unter C2+-Kohlenwasserstoff-Synthesebedingungen mit dem Katalysator und einem Metall oder einer Metallverbindung, die den niedermolekularen Kohlenwasserstoff in einen höhermolekularen Kohlenwasserstoff umwandeln kann; und (b) Entnehmen eines höhermolekularen Kohlenwasserstoffstroms aus dem Reaktionsbereich. Verfahren nach Anspruch 68, wobei das Metall oder die Metallverbindung ein Lanthaniden- oder Aktinidenmetall oder eine -Metallverbindung umfasst. Verfahren nach Anspruch 68, wobei der niedermolekulare Kohlenwasserstoff Methan ist. Verfahren zum Reduzieren der in einem Gasstrom enthaltenen Stickoxide in Gegenwart von Sauerstoff, umfassend das Zusammenbringen des Gasstroms mit einem Zeolithen nach Anspruch 1 oder 2. Verfahren nach Anspruch 71, wobei der Zeolith ein Metall oder Metallionen enthält, welche die Reduktion der Stickoxide katalysieren können. Verfahren nach Anspruch 71, wobei das Metall Kupfer, Kobalt oder Gemische davon ist. Verfahren nach Anspruch 71, wobei der Gasstrom der Abgasstrom eines Verbrennungsmotors ist.
Anspruch[en]
A zeolite having a mole ratio greater than about 20 of an oxide of a first tetravalent element to an oxide of a second tetravalent element which is different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof and having, after calcination, the X ray diffraction lines of Table II below: <u>TABLE II</u> Calcined SSZ -60 Two Theta (deg.) (a) d-spacing (Å / × 10-10m) Relative Intensity 6.4 13.8 VS 7.6 11.6 S 8.0 11.0 VS 10.25 8.62 S 15.1 5.86 W 17.5 5.06 W 19.2 4.62 M 20.4 4.35 M 22.3 3.98 S 24.2 3.67 W 27.1 3.29 W 28.0 3.18 W 35.7 2.51 W (a) ± 0.2
A zeolite according to claim 1 having a mole ratio greater than about 20 of an oxide selected from the group consisting of silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof, and having, after calcination, the X-ray diffraction lines of Table II. A zeolite according to Claim 2 wherein the oxides comprise silicon oxide and aluminum oxide. A zeolite according to Claim 2 wherein the oxides comprise silicon oxide and boron oxide. A zeolite according to Claim 1 wherein said zeolite is predominantly in the hydrogen form. A zeolite according to Claim 1 wherein said zeolite is substantially free of acidity. A zeolite according to claim 1 or 2 having a composition, as synthesized and in the anhydrous state, in terms of mole ratios as follows: YO2/WcOd >20 M2/n/YO2 0.01-0.03 Q/YO2 0.02-0.05
wherein Y is silicon, germanium or a mixture thereof; W is aluminum, gallium, iron, boron, titanium, indium, vanadium or mixtures thereof; c is 1 or 2; d is 2 when c is 1 or d is 3 or 5 when c is 2; M is an alkali metal cation, alkaline earth metal cation or mixtures thereof; n is the valence of M; and Q is a N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation.
A zeolite according to Claim 7 wherein W is aluminum and Y is silicon. A zeolite according to Claim 7 wherein W is boron and Y is silicon. A zeolite according to Claim 7 wherein Q is a N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium cation. A zeolite according to Claim 7 wherein Q is a N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation. A method of preparing the zeolite of claim 1 or 2 comprising contacting under crystallization conditions sources of said oxides and a templating agent comprising a N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium cation or N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation. The method according to Claim 12 wherein the first tetravalent element is selected from the group consisting of silicon, germanium and combinations thereof. The method according to Claim 12 wherein the second tetravalent element, trivalent element or pentavalent element is selected from the group consisting of aluminum, gallium, iron, boron, titanium, indium, vanadium and combinations thereof. The method according to Claim 14 wherein the second tetravalent element or trivalent element is selected from the group consisting of aluminum, boron, titanium and combinations thereof. The method according to Claim 15 wherein the first tetravalent element is silicon. The method of Claim 12 wherein the templating agent is a N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium cation. The method of Claim 12 wherein the templating agent is a N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium cation. A process for converting hydrocarbons comprising contacting a hydrocarbonaceous feed at hydrocarbon converting conditions with a catalyst comprising the zeolite of claim 1 or 2. The process of Claim 19 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 19 wherein the zeolite is substantially free of acidity. The process of Claim 19 wherein the process is a hydrocracking process comprising contacting the catalyst with a hydrocarbon feedstock under hydrocracking conditions. The process of Claim 22 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 19 wherein the process is a dewaxing process comprising contacting the catalyst with a hydrocarbon feedstock under dewaxing conditions. The process of Claim 24 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 19 wherein the process is a process for improving the viscosity index of a dewaxed product of waxy hydrocarbon feeds comprising contacting the catalyst with a waxy hydrocarbon feed under isomerization dewaxing conditions. The process of Claim 26 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 19 wherein the process is a process for producing a C20+ lube oil from a C20+ olefin feed comprising isomerizing said olefin feed under isomerization conditions over the catalyst. The process of Claim 28 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 28 wherein the catalyst further comprises at least one Group VIII metal. The process of Claim 19 wherein the process is a process for catalytically dewaxing a hydrocarbon oil feedstock boiling above about 177°C (350°F) and containing straight chain and slightly branched chain hydrocarbons comprising contacting said hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of about 0.103-20.7 MPa (15-3000 psi) under dewaxing conditions with the catalyst. The process of Claim 31 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 31 wherein the catalyst further comprises at least one Group VIII metal. The process of Claim 31 wherein said catalyst comprises a layered catalyst comprising a first layer comprising the zeolite and at least one Group VIII metal, and a second layer comprising an aluminosilicate zeolite which is more shape selective than the zeolite of said first layer. The process of Claim 19 wherein the process is a process for preparing a lubricating oil which comprises: hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil; and catalytically dewaxing said effluent comprising hydrocracked oil at a temperature of at least about 204°C (400°F) and at a pressure of from about 0.103 MPa gauge (15 psig) to about 20.7 MPa gauge (3000 psig) in the presence of added hydrogen gas with the catalyst. The process of Claim 35 wherein the zeolite is predominantly in the hydrogen form. The process of claim 35 wherein the catalyst further comprises at least one Group VIII metal. The process of Claim 19 wherein the process is a process for isomerization dewaxing a raffinate comprising contacting said raffinate in the presence of added hydrogen under isomerization dewaxing conditions with the catalyst. The process of Claim 38 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 38 wherein the catalyst further comprises at least one Group VIII metal. The process of Claim 38 wherein the raffinate is bright stock. The process of Claim 19 wherein the process is a process for increasing the octane of a hydrocarbon feedstock to produce a product having an increased aromatics content comprising contacting a hydrocarbonaceous feedstock which comprises normal and slightly branched hydrocarbons having a boiling range above about 40°C and less than about 200°C under aromatic conversion conditions with the catalyst. The process of Claim 42 wherein the zeolite is substantially free of acid. The process of Claim 42 wherein the zeolite contains a Group VIII metal component. The process of Claim 19 wherein the process is a catalytic cracking process comprising contacting a hydrocarbon feedstock in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with the catalyst. The process of Claim 45 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 45 wherein the catalyst additionally comprises a large pore crystalline cracking component. The process of Claim 19 wherein the process is an isomerization process for isomerizing C4 to C7 hydrocarbons, comprising contacting a feed having normal and slightly branched C4 to C7 hydrocarbons under isomerizing conditions with the catalyst. The process of Claim 48 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 48 wherein the zeolite has been impregnated with at least one Group VIII metal. The process of Claim 48 wherein the catalyst has been calcined in a steam/air mixture at an elevated temperature after impregnation of the Group VIII metal. The process of Claim 50 wherein the Group VIII metal is platinum. The process of Claim 19 wherein the process is a process for alkylating an aromatic hydrocarbon which comprises contacting under alkylation conditions at least a molar excess of an aromatic hydrocarbon with a C2 to C20 olefin under at least partial liquid phase conditions and in the presence of the catalyst The process of Claim 53 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 53 wherein the olefin is a C2 to C4 olefin. The process of Claim 55 wherein the aromatic hydrocarbon and olefin are present in a molar ratio of about 4:1 to about 20:1, respectively. The process of Claim 55 wherein the aromatic hydrocarbon is selected from the group consisting of benzene, toluene, ethylbenzene, xylene, naphthalene, naphthalene derivatives, dimethylnaphthalene or mixtures thereof. The process of Claim 19 wherein the process is a process for transalkylating an aromatic hydrocarbon which comprises contacting under transalkylating conditions an aromatic hydrocarbon with a polyalkyl aromatic hydrocarbon under at least partial liquid phase conditions and in the presence of the catalyst The process of Claim 58 wherein the zeolite is predominantly in the hydrogen form. The process of Claim 58 wherein the aromatic hydrocarbon and the polyalkyl aromatic hydrocarbon are present in a molar ratio of from about 1:1 to about 25:1, respectively. The process of Claim 58 wherein the aromatic hydrocarbon is selected from the group consisting of benzene, toluene, ethylbenzene, xylene, or mixtures thereof. The process of Claim 58 wherein the polyalkyl aromatic hydrocarbon is a dialkylbenzene. The process of Claim 19 wherein the process is a process to convert paraffins to aromatics which comprises contacting paraffins under conditions which cause paraffins to convert to aromatics with a catalyst comprising the zeolite and gallium, zinc, or a compound of gallium or zinc. The process of Claim 19 wherein the process is a process for isomerizing olefins comprising contacting said olefin under conditions which cause isomerization of the olefin with the catalyst. The process of Claim 19 wherein the process is a process for isomerizing an isomerization feed comprising an aromatic C8 stream of xylene isomers or mixtures of xylene isomers and ethylbenzene, wherein a more nearly equilibrium ratio of ortho-, meta and para-xylenes is obtained, said process comprising contacting said feed under isomerization conditions with the catalyst. The process of Claim 19 wherein the process is a process for oligomerizing olefins comprising contacting an olefin feed under oligomerization conditions with the catalyst. A process for converting lower alcohols and other oxygenated hydrocarbons comprising contacting said lower alcohol or other oxygenated hydrocarbon under conditions to produce liquid products with a catalyst comprising a zeolite according to claim 1 or 2. The process of Claim 19 wherein the process is a process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons comprising the steps of: (a) introducing into a reaction zone a lower molecular weight hydrocarbon-containing gas and contacting said gas in said zone under C2+ hydrocarbon synthesis conditions with the catalyst and a metal or metal compound capable of converting the lower molecular weight hydrocarbon to a higher molecular weight hydrocarbon; and (b) withdrawing from said reaction zone a higher molecular weight hydrocarbon-containing stream. The process of Claim 68 wherein the metal or metal compound comprises a lanthanide or actinide metal or metal compound. The process of Claim 68 wherein the lower molecular weight hydrocarbon is methane. A process for the reduction of oxides of nitrogen contained in a gas stream in the presence of oxygen wherein said process comprises contacting the gas stream with a zeolite according to claim 1 or 2. The process of Claim 71 wherein said zeolite contains a metal or metal ions capable of catalyzing the reduction of the oxides of nitrogen. The process of Claim 71 wherein the metal is copper, cobalt or mixtures thereof. The process of Claim 71 wherein the gas stream is the exhaust stream of an internal combustion engine.
Anspruch[fr]
Zéolite ayant un rapport molaire supérieur à environ 20 d'un oxyde d'un premier élément tétravalent à un oxyde d'un second élément tétravalent qui est différent dudit premier élément tétravalent, d'un élément trivalent, d'un élément pentavalent ou d'un de leurs mélanges et ayant, après calcination, les raies de diffraction des rayons X du tableau II ci-dessous : Tableau II SSZ-60 calcinée Deux-thêta (deg) (a) distance d (Å/ x 10-10 m) Intensité relative 6,4 13,8 VS 7,6 11,6 S 8,0 11,0 VS 10,25 8,62 S 15,1 5,86 W 17,5 5,06 W 19,2 4,62 M 20,4 4,35 M 22,3 3,98 S 24,2 3,67 W 27,1 3,29 W 28,0 3,18 W 35,7 2,51 W (a) ± 0, 2
Zéolite suivant la revendication 1, ayant un rapport molaire supérieur à 20 d'un oxyde choisi dans le groupe consistant en l'oxyde de silicium, l'oxyde de germanium et leurs mélanges à un oxyde choisi entre l'oxyde d'aluminium, l'oxyde de gallium, l'oxyde de fer, l'oxyde de bore, l'oxyde de titane, l'oxyde d'indium, l'oxyde de vanadium et leurs mélanges, et ayant, après calcination, les raies de diffraction des rayons X du tableau II. Zéolite suivant la revendication 2, dans laquelle les oxydes comprennent l'oxyde de silicium et l'oxyde d'aluminium. Zéolite suivant la revendication 2, dans laquelle les oxydes comprennent l'oxyde de silicium et l'oxyde de bore. Zéolite suivant la revendication 1, ladite zéolite étant principalement sous forme hydrogène. Zéolite suivant la revendication 1, ladite zéolite étant pratiquement dépourvue d'acidité. Zéolite suivant la revendication 1 ou 2, ayant une composition, telle que synthétisée à l'état anhydre, en termes de rapports molaires, suivante : YO2/WcOd > 20 M2/n/YO2 0,01 - 0,03 Q/YO2 0,02 - 0,05
dans laquelle Y représente le silicium, le germanium ou un de leurs mélanges, W représente l'aluminium, le gallium, le fer, le bore, le titane, l'indium, le vanadium ou leurs mélanges, c est égal à 1 ou 2, d est égal à 2 lorsque c est égal à 1 ou d est égal à 3 ou 5 lorsque c est égal à 2 ; M représente un cation de métal alcalin, un cation de métal alcalinoterreux ou leurs mélanges ; n représente la valence de M ; et Q représente un cation N-éthyl-N-(3,3,5-triméthylcyclohexyl)pyrrolidinium ou cation N-éthyl-N-(2,4,4-triméthylcyclopentyl)pyrrolidinium.
Zéolite suivant la revendication 7, dans laquelle W représente l'aluminium et Y représente le silicium. Zéolite suivant la revendication 7, dans laquelle W représente le bore et Y représente le silicium. Zéolite suivant la revendication 7, dans laquelle Q représente un cation N-éthyl-N-(3,3,5-triméthylcyclohexyl)-pyrrolidinium. Zéolite suivant la revendication 7, dans laquelle Q représente un cation N-éthyl-N-(2,4,4-triméthylcyclopentyl)-pyrrolidinium. Procédé pour la préparation de la zéolite de la revendication 1 ou 2, comprenant la mise en contact dans des conditions de cristallisation de sources desdits oxydes et d'un agent servant de modèle comprenant un cation N-éthyl-N-(3,3,5-triméthylcyclohexyl)pyrrolidinium ou cation N-éthyl-N-(2,4,4-triméthylcyclopentyl)pyrrolidinium. Procédé suivant la revendication 12, dans lequel le premier élément tétravalent est choisi dans le groupe consistant en le silicium, le germanium et leurs associations. Procédé suivant la revendication 12, dans lequel le second élément tétravalent, l'élément trivalent ou l'élément pentavalent est choisi dans le groupe consistant en l'aluminium, le gallium, le fer, le bore, le titane, l'indium, le vanadium et leurs associations. Procédé suivant la revendication 14, dans lequel le second élément tétravalent ou l'élément trivalent est choisi dans le groupe consistant en l'aluminium, le bore, le titane et leurs associations. Procédé suivant la revendication 15, dans lequel le premier élément tétravalent est le silicium. Procédé suivant la revendication 12, dans lequel l'agent servant de modèle est un cation N-éthyl-N-(3,3,5-triméthylcyclohexyl)pyrrolidinium. Procédé suivant la revendication 12, dans lequel l'agent servant de modèle est un cation N-éthyl-N-(2,4,4-triméthylcyclopentyl)pyrrolidinium. Procédé pour convertir des hydrocarbures, comprenant la mise en contact d'une charge hydrocarbonée d'alimentation dans des conditions de conversion d'hydrocarbures avec un catalyseur comprenant la zéolite de la revendication 1 ou 2. Procédé suivant la revendication 19, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 19, dans lequel la zéolite est pratiquement dépourvue d'acidité. Procédé suivant la revendication 19, le procédé étant un procédé d'hydrocraquage comprenant la mise en contact du catalyseur avec une charge d'hydrocarbures d'alimentation dans des conditions d'hydrocraquage. Procédé suivant la revendication 22, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 19, le procédé étant un procédé de déparaffinage comprenant la mise en contact du catalyseur avec une charge d'hydrocarbures d'alimentation dans des conditions de déparaffinage. Procédé suivant la revendication 24, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 19, le procédé étant un procédé pour améliorer l'indice de viscosité d'un produit déparaffiné de charge d'hydrocarbures paraffiniques d'alimentation, comprenant la mise en contact du catalyseur avec une charge d'hydrocarbures paraffiniques d'alimentation dans des conditions de déparaffinage par isomérisation. Procédé suivant la revendication 26, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 19, le procédé étant un procédé pour la production d'une huile lubrifiante en C20+ à partir d'une charge oléfinique en C20+, comprenant l'isomérisation de ladite charge oléfinique dans des conditions d'isomérisation sur le catalyseur. Procédé suivant la revendication 28, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 28, dans lequel le catalyseur comprend en outre au moins un métal du Groupe VIII. Procédé suivant la revendication 19, le procédé étant un procédé pour le déparaffinage catalytique d'une charge d'huile hydrocarbonée d'alimentation bouillant au-delà d'environ 177°C (350°F) et contenant des hydrocarbures à chaîne droite et des hydrocarbures à chaîne légèrement ramifiée, comprenant la mise en contact de ladite charge d'huile hydrocarbonée d'alimentation en présence d'hydrogène gazeux ajouté à une pression d'hydrogène d'environ 0,103 à 20,7 MPa (15 à 3000 psi) dans des conditions de déparaffinage avec le catalyseur. Procédé suivant la revendication 31, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 31, dans lequel le catalyseur comprend en outre au moins un métal du Groupe VIII. Procédé suivant la revendication 31, dans lequel ledit catalyseur comprend un catalyseur stratifié comprenant une première couche comprenant la zéolite et au moins un métal du Groupe VIII, et une seconde couche comprenant une zéolite du type aluminosilicate qui présente une plus grande sélectivité de forme que la zéolite de ladite première couche. Procédé suivant la revendication 19, le procédé étant un procédé pour la préparation d'une huile lubrifiante, qui comprend : l'hydrocraquage dans une zone d'hydrocraquage d'une charge hydrocarbonée d'alimentation pour obtenir un effluent comprenant une huile hydrocraquée ; et le déparaffinage catalytique dudit effluent comprenant l'huile hydrocraquée à une température d'au moins environ 204°C (400°F) à une pression d'environ 0,103 MPa au manomètre (15 psig) à environ 20,7 MPa au manomètre (3000 psig) en présence d'hydrogène gazeux ajouté avec le catalyseur. Procédé suivant la revendication 35, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 35, dans lequel le catalyseur comprend en outre au moins un métal du Groupe VIII. Procédé suivant la revendication 19, le procédé étant un procédé de déparaffinage par isomérisation d'un raffinat, comprenant la mise en contact dudit raffinat en présence d'hydrogène ajouté dans des conditions de déparaffinage par isomérisation avec le catalyseur. Procédé suivant la revendication 38, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 38, dans lequel le catalyseur comprend en outre au moins un métal du Groupe VIII. Procédé suivant la revendication 38, dans lequel le raffinat est une huile lubrifiante de base à haute viscosité "bright stock". Procédé suivant la revendication 19, le procédé étant un procédé pour augmenter l'indice d'octane d'une charge d'hydrocarbures d'alimentation afin de produire un produit ayant une teneur accrue en composés aromatiques, comprenant la mise en contact d'une charge hydrocarbonée d'alimentation qui comprend des hydrocarbures normaux et des hydrocarbures légèrement ramifiés ayant une plage d'ébullition de plus d'environ 40°C à moins d'environ 200°C dans des conditions de conversion en composés aromatiques avec le catalyseur. Procédé suivant la revendication 42, dans lequel la zéolite est pratiquement dépourvue d'acide. Procédé suivant la revendication 42, dans lequel la zéolite contient un constituant renfermant un métal du Groupe VIII. Procédé suivant la revendication 19, le procédé étant un procédé de craquage catalytique, comprenant la mise en contact d'une charge d'hydrocarbures d'alimentation dans une zone réactionnelle dans des conditions de craquage catalytique en l'absence d'hydrogène ajouté avec le catalyseur. Procédé suivant la revendication 45, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 45, dans lequel le catalyseur comprend en outre un constituant de craquage cristallin à large pores. Procédé suivant la revendication 19, le procédé étant un procédé d'isomérisation pour l'isomérisation d'hydrocarbures en C4 à C7, comprenant la mise en contact d'une charge d'alimentation comprenant des hydrocarbures en C4 à C7 normaux et des hydrocarbures en C4 à C7 légèrement ramifiés dans des conditions d'isomérisation avec le catalyseur. Procédé suivant la revendication 48, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 48, dans lequel la zéolite a été imprégnée avec au moins un métal du Groupe VIII. Procédé suivant la revendication 48, dans lequel le catalyseur a été calciné dans un mélange vapeur d'eau/air à une température élevée après imprégnation avec le métal du Groupe VIII. Procédé suivant la revendication 50, dans lequel le métal du Groupe VIII est le platine. Procédé suivant la revendication 19, le procédé étant un procédé pour l'alkylation d'un hydrocarbure aromatique, qui comprend la mise en contact dans des conditions d'alkylation d'au moins un excès molaire d'un hydrocarbure aromatique avec une oléfine en C2 à C20 dans des conditions de phase liquide au moins partielle et en présence d'un catalyseur. Procédé suivant la revendication 53, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 53, dans lequel l'oléfine est une oléfine en C2 à C4. Procédé suivant la revendication 55, dans lequel l'hydrocarbure aromatique et l'oléfine sont présents en un rapport molaire d'environ 4:1 à environ 20:1, respectivement. Procédé suivant la revendication 55, dans lequel l'hydrocarbure aromatique est choisi dans le groupe consistant en le benzène, le toluène, l'éthylbenzène, le xylène, le naphtalène, des dérivés de naphtalène, le diméthylnaphtalène et leurs mélanges. Procédé suivant la revendication 19, le procédé étant un procédé de transalkylation d'un hydrocarbure aromatique, qui comprend la mise en contact dans des conditions de transalkylation d'un hydrocarbure aromatique avec un hydrocarbure polyalkyl-aromatique dans des conditions de phase liquide au moins partielle et en présence du catalyseur. Procédé suivant la revendication 58, dans lequel la zéolite est principalement sous forme hydrogène. Procédé suivant la revendication 58, dans lequel l'hydrocarbure aromatique et l'hydrocarbure polyalkyl-aromatique sont présents en un rapport molaire d'environ 1:1 à environ 25:1, respectivement. Procédé suivant la revendication 58, dans lequel l'hydrocarbure aromatique est choisi dans le groupe consistant en le benzène, le toluène, l'éthylbenzène, le xylène ou leurs mélanges. Procédé suivant la revendication 58, dans lequel l'hydrocarbure polyalkyl-aromatique est un dialkylbenzène. Procédé suivant la revendication 19, le procédé étant un procédé pour convertir des paraffines en des composés aromatiques, qui comprend la mise en contact de paraffines dans des conditions qui provoquent la conversion des paraffines en composés aromatiques avec un catalyseur comprenant la zéolite et du gallium, du zinc ou un composé de gallium ou de zinc. Procédé suivant la revendication 19, le procédé étant un procédé pour l'isomérisation d'oléfines, comprenant la mise en contact d'une telle oléfine dans des conditions qui provoquent l'isomérisation de l'oléfine avec le catalyseur. Procédé suivant la revendication 19, le procédé étant un procédé pour l'isomérisation d'une charge d'isomérisation comprenant un courant aromatique en C8 d'isomères du xylène ou de mélanges d'isomères du xylène et d'éthylbenzène, dans lequel un rapport plus proche de l'équilibre des ortho-, méta- et para-xylènes est obtenu, ledit procédé comprenant la mise en contact de ladite charge d'alimentation dans des conditions d'isomérisation avec le catalyseur. Procédé suivant la revendication 19, le procédé étant un procédé pour l'oligomérisation d'oléfines, comprenant la mise en contact d'une charge oléfinique d'alimentation dans des conditions d'oligomérisation avec le catalyseur. Procédé pour convertir des alcools inférieurs et d'autres hydrocarbures oxygénés, comprenant la mise en contact d'un tel alcool inférieur ou d'un autre hydrocarbure oxygéné dans des conditions pour produire des produits liquides avec un catalyseur comprenant une zéolite suivant la revendication 1 ou 2. Procédé suivant la revendication 19, le procédé étant un procédé pour la production d'hydrocarbures de poids moléculaire plus élevé à partir d'hydrocarbures de poids moléculaire plus bas, comprenant les étapes consistant : (a) à introduire dans une zone réactionnelle un gaz contenant des hydrocarbures de poids moléculaire plus bas et à mettre en contact ledit gaz dans ladite zone dans des conditions de synthèse d'hydrocarbures en C2+ avec le catalyseur et un métal ou composé métallique capable de convertir l'hydrocarbure de poids moléculaire plus bas en un hydrocarbure de poids moléculaire plus élevé ; et (b) à décharger de ladite zone réactionnelle un courant contenant des hydrocarbures de poids moléculaire plus élevé. Procédé suivant la revendication 68, dans lequel le métal ou le composé métallique comprend un métal ou composé de métal du type lanthanide ou actinide. Procédé suivant la revendication 68, dans lequel l'hydrocarbure de poids moléculaire plus bas est le méthane. Procédé pour la réduction d'oxydes d'azote présents dans un courant gazeux en présence d'oxygène, ledit procédé comprenant la mise en contact du courant gazeux avec une zéolite suivant la revendication 1 ou 2. Procédé suivant la revendication 71, dans lequel ladite zéolite contient un métal ou des ions métalliques et est capable de catalyser la réduction des oxydes d'azote. Procédé suivant la revendication 71, dans lequel le métal est le cuivre, le cobalt ou leurs mélanges. Procédé suivant la revendication 71, dans lequel le courant gazeux est le courant d'échappement d'un moteur à combustion interne.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com