PatentDe  


Dokumentenidentifikation DE102006022066A1 15.11.2007
Titel ESD-Schutzschaltung
Anmelder Infineon Technologies AG, 81669 München, DE
Erfinder Knapp, Herbert, Dr., 80798 München, DE;
Wohlmuth, Hans-Dieter, Dr., 81735 München, DE
Vertreter Meissner, Bolte & Partner GbR, 80538 München
DE-Anmeldedatum 11.05.2006
DE-Aktenzeichen 102006022066
Offenlegungstag 15.11.2007
Veröffentlichungstag im Patentblatt 15.11.2007
IPC-Hauptklasse H01L 23/60(2006.01)A, F, I, 20060511, B, H, DE
IPC-Nebenklasse H02H 9/04(2006.01)A, L, I, 20060511, B, H, DE   
Zusammenfassung Die Erfindung betrifft eine ESD-Schutzschaltung einer an eine Signalleitung und eine positive und negative Versorgungsspannung angeschlossenen integrierten Schaltung, mit mindestens einem zwischen die Signalleitung und der Versorgungsspannungen geschalteten ESD-Element. Ein Hochfrequenzleitung (L1) ist hierbei mit dem ESD-Element in Reihe geschaltet, wobei das ESD-Element derart dimensioniert ist, dass bei einer vorbestimmten Signal-Hochfrequenz der Strompfad über das ESD-Element von einer gegenüber der Systemimpedanz niedrigen Impedanz auf eine Impedanz transformiert wird, die sehr hoch gegenüber der Systemimpedanz ist.

Beschreibung[de]

Die Erfindung betrifft eine ESD-Schutzschaltung für Signaleingänge nach dem Oberbegriff des Patentanspruches 1.

ESD(Electrostatic Discharge)-Schutzschaltungen sind bekanntlich erforderlich, um integrierte Schaltungen vor Überspannungen zu schützen. Solche Überspannungen können durch ein ESD-Ereignis hervorgerufen werden, beispielsweise durch Berührungen eines Operators oder selbst während der Herstellung der integrierten Schaltung. Beispielsweise kann eine Person eine sehr hohe Spannung von einigen hundert bis einige tausend Volt durch bloßes Bewegen über einen Teppich erzeugen. Ferner gibt es heutzutage eine zunehmende Tendenz, austauschbare IC's in elektronischen Systemen zu verwenden, so dass lediglich eine oder mehrere integrierte Schaltungen anstelle der gesamten Platine zu ersetzen sind, um beispielsweise Mikroprozessoren oder Speicherkarten auf den neusten Stand zu bringen. Zum Schutz der integrierten Schaltungen müssen diese nun mit einem entsprechenden ESD-Schutz versehen werden.

Dazu wurde eine Reihe von Schutzschaltungen vorgeschlagen, die typischerweise zwischen Anschluss der integrierten Schaltung, auch Pad genannt, und der integrierten Schaltung angeordnet sind, um einen Stromweg bereitzustellen, der sicherstellt, dass die an die integrierte Schaltung angelegte Spannung deutlich unterhalb einer spezifischen kritischen Grenze bleibt.

Herkömmliche ESD-Schutzschaltungen, sei es intern auf einem Chip oder extern, sind wegen ihres nachteiligen Einflusses auf die Leistung von Hochfrequenzeinheiten nicht für Hochfrequenzanwendungen geeignet. Gewöhnliche Schaltungen, die bei tiefen Frequenzen oder mit geringer Geschwindigkeit betrieben werden, sind für die von herkömmlichen ESD-Schutzschaltungen verursachten parasitären Widerständen, Kapazitäten und Induktivitäten relativ unempfindlich.

In „Advanced Simulation Methods for ESD Protection Development" von Kai Esmark, Harald Gossner und Wolfgang Stadler, 2003, Elsevier, Kapitel 2.4, Seite 43, wird z.B eine ESD-Schutzschaltung mit zwei Dioden als ESD-Schutzelemente beschrieben, wo Ein- und Ausgangspads der integrierten Schaltung direkt mit ESD-Schutzelementen versehen sind (1). Diese ESD-Schutzelemente stellen eine parasitäre Kapazität dar, die die Funktion der Schaltung beeinträchtigen kann.

Bei sehr hohen Frequenzen können aus diesem Grund herkömmliche ESD-Elemente nicht mehr zum Einsatz kommen. Bei einer Frequenz von 77 GHz stellt z.B. eine parasitäre Kapazität von 100 fF nur mehr einen Blindwiderstand von 20,7 &OHgr; dar.

Aus der US 6,847,511 B2 und aus D. Linten et al.: „A 5-GHz Fully Integrated ESD-Protected Low-Noise Amplifier in 90-nm RF CMOS", IEEE Jounal of Solid State Circuits, vol. 40, no. 7„ July 2005, 5.1434-1442, gibt es Vorschläge, auf ESD-Elemente an kritischen Hochfrequenzpads ganz oder teilweise zu verzichten, und statt dessen einen Gleichspannungspfad vom Pad zur Versorgungsspannung vorzusehen, z.B. mit Hilfe einer auf einem Chip integrierten Spule oder Leitung (2). Diese Lösung hat allerdings den Nachteil, dass in vielen Anwendungen dieser Gleichspannungspfad unerwünscht ist.

Der Erfindung liegt die Aufgabe zugrunde, eine ESD-Schutzschaltung zu schaffen, welche bei hohen Frequenzen die oben genannten Nachteile nicht mehr aufweist.

Erfindungsgemäß wird diese Aufgabe durch eine ESD-Schutzschaltung mit den Merkmalen des Anspruchs 1 gelöst. Insbesondere wird die Aufgabe durch eine ESD-Schutzschaltung einer an eine Signalleitung und eine positive und negative Versorgungsspannung angeschlossenen integrierten Schaltung, mit mindestens einem zwischen die Signalleitung und der Versorgungsspannung geschalteten ESD-Element, gelöst, wobei eine Hochfrequenzleitung mit dem ESD-Element in Reihe geschaltet ist, welche derart dimensioniert ist, dass bei einer vorbestimmten Signal-Hochfrequenz der Strompfad über das ESD-Element von einer gegenüber der Systemimpedanz niedrigen Impedanz auf eine Impedanz transformiert wird, die sehr hoch gegenüber der Systemimpedanz ist.

Ein wesentlicher Punkt der Erfindung liegt darin, dass eine Hochfrequenzleitung definierter Länge die ESD-Elemente vom Hochfrequenzpad entkoppelt und bei einer vorbestimmten Signal-Hochfrequenz eine Impedanztransformation von einer, gegenüber der System-Impedanz, sehr niedrigen Impedanz (Kurzschluss) auf eine sehr hohe Impedanz (Leerlauf) bewirkt, sodass die Funktion der Schaltung nicht beeinträchtigt wird.

In einer ersten Ausführungsform der Erfindung sind mindestens zwei ESD-Elemente in Reihe zwischen die positive und negative Versorgungsspannung geschaltet und über einen zwischen ihnen vorgesehenen Knotenpunkt und die Hochfrequenzleitung mit der Signalleitung und über diese mit der integrierten Schaltung verbunden. Dadurch wird erreicht, dass negative und positive, durch ESD-Ereignisse hervorgerufene Überspannungen von der Signalleitung abgeleitet werden können.

Des weiteren ist es möglich, einen Parallel-Kondensator parallel zu einem der ESD-Elemente mit der Hochfrequenzleitung und der positiven oder negativen Versorgungsspannung zu verbinden, wobei die Kapazität des Parallel-Kondensators so gewählt ist, dass er bei der Signal-Hochfrequenz der integrierten Schaltung eine sehr niedrige Impedanz gegenüber der Systemimpedanz hat. Dadurch wird erreicht, dass die Länge der Hochfrequenzleitung im Wesentlichen ein Viertel der Wellenlänge (&lgr;) einer Signal-Hochfrequenz der integrierten Schaltung ist und somit Hochfrequenzleitungen mit Standardlängen, wie z.B. &lgr;/4-Leitungen, genutzt werden können.

In einer anderen Ausführungsform der Erfindung ist ein Reihen-Kondensator als Kopplungskondensator zwischen den Knotenpunkt der Signalleitung und der Hochfrequenzleitung und die integrierte Schaltung geschaltet. Dadurch wird eine gleichspannungsmäßige Entkopplung zwischen dem Pad und der integrierten Schaltung erreicht.

In einer weiteren Ausführungsform der Erfindung sind mindestens zwei Signalleitungen an die integrierte Schaltung angeschlossen und jeweils über eine Hochfrequenzleitung und ein ESD-Element mit der positiven bzw. negativen Versorgungsspannung verbunden. Dadurch wird erreicht, dass die ESD-Elemente gemeinsam für mehrere Pads genutzt werden können, was z.B. bei Ein- und Ausgängen gegenphasiger Signale besonders vorteilhaft ist.

Weiterhin ist die oder jede Hochfrequenzleitung als Microstrip-Leitung oder koplanare Leitung ausgebildet, wodurch der verfügbare Platz in z.B. Halbleiterschaltungen bestmöglich ausgenutzt wird.

Eine weitere Ausführungsform sieht vor, dass ein Anpassungsnetzwerk für integrierte Schaltungen zur Impedanzanpassung zwischen einem Signal-Pad und der integrierten Schaltung in die erfindungsgemäße ESD-Schutzschaltung derart integriert ist, das die Funktion mindestens einer der Induktivitäten des Anpassungsnetzwerkes durch die Hochfrequenzleitung der erfindungsgemäßen ESD-Schutzschaltung realisiert wird, wobei die Länge der Hochfrequenzleitung ungleich einem Viertel der Wellenlänge (&lgr;/4) einer Signal-Hochfrequenz ist. Dadurch wird erreicht, dass die ESD-Schutzschaltung zusätzlich als Teil eines Impedanz-Anpassungsnetzwerkes für integrierte Schaltungen ausgenutzt wird, wobei Bauteile, Platz und folglich Kosten eingespart werden.

Eine weitere Ausführungsform der Erfindung sieht eine Halbleitervorrichtung vor, die eine integrierte Schaltung, eine Ein- und/oder Ausgangsanschlussfläche, mindestens eine Signalleitung zwischen der Ein- und/oder Ausgangsanschlussfläche und der integrierten Schaltung umfasst, wobei die oben genannte erfindungsgemäße ESD-Schutzschaltung zwischen der integrierten Schaltung und der Ein- und/oder Ausgangsanschlussfläche integriert ist. Dadurch wird eine Halbleitervorrichtung ermöglicht, welche zum einen gegen Überspannungen durch ESD-Ereignisse geschützt ist und zum anderen nicht die Nachteile der bei hoher Frequenz betriebenen herkömmlichen ESD-Schutzschaltungen hat.

Weitere Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen beschrieben, die anhand der Abbildungen näher erläutert werden. Hierbei zeigen:

1 eine herkömmliche ESD-Schaltung für tiefe Frequenzen;

2 eine herkömmliche ESD-Schaltung ohne ESD-Elemente and den kritischen Hochfrequenzpads;

3 eine Ausführungsform der Erfindung mit zwei ESD-Elementen und einem zusätzlichen Kondensator;

4 ein Smith-Diagramm einer Impedanztransformation von einem Kurzschluss (Z1) auf einen Leerlauf (Z2);

5 eine andere Ausführungsform der Erfindung mit einem zusätzlichen Koppelkondensator zur gleichspannungsmäßigen Entkopplung zwischen Pad und integrierter Schaltung;

6 eine Ausführungsform der Erfindung, bei der die ESD-Elemente als verlustarme Kondensatoren modelliert sind und folglich auf den Parallel-Kondensator verzichtet werden kann;

7 ein Smith-Diagramm einer Impedanztransformation von einer kapazitiven Impedanz (Z1) auf einen Leerlauf (Z2), wobei die Länge der Hochfrequenzleitung größer &lgr;/4 gewählt ist;

8 eine andere Ausführungsform der Erfindung, in der z.B. zwei ESD-Elemente und ein Parallel-Kondensator gemeinsam für mehrere Pads genutzt werden können;

9 ein Beispiel eines Anpassungsnetzwerks, bestehend aus zwei Induktivitäten (Impedanz Xp1, Xp2) und einem Kondensator (Impedanz Xs);

10 eine weitere Ausführungsform der Erfindung, wobei ein Anpassungsnetzwerk in einer ESD-Schutzschaltung integriert ist;

11 ein Smith-Diagramm einer Impedanztransformation von einer niedrigen Impedanz (Z1) auf eine höhere Impedanz (Z2), wobei die Länge der Hochfrequenzleitung kleiner &lgr;/4 gewählt ist, so dass z.B. induktives Verhalten erzielt wird;

11 einen prinzipiellen Aufbau einer Microstrip-Leitung; und

13 eine Microstrip-Leitung in leicht abgewandelter Form.

In der nachfolgenden Beschreibung werden für gleiche und gleich wirkende Teile dieselben Bezugsziffern verwendet.

Das in 3 dargestellte Ausführungsbeispiel zeigt eine Anwendung einer Hochfrequenzleitung L1 in Verbindung mit zwei ESD-Elementen D1, D2 und einem Parallel-Kondensator C1. Die ESD-Elemente D1 und D2 sind hierbei nicht direkt, sondern über die Hochfrequenzleitung L1 mit dem Signal-Pad verbunden. Zusätzlich ist ein Parallel-Kondensator C1 vorgesehen, dessen Wert so gewählt ist, dass er bei der vorbestimmten Signal-Hochfrequenz als Kurzschluss wirkt. Die Länge der Hochfrequenzleitung L1 entspricht dabei einem Viertel der Wellenlänge (&lgr;/4) und bewirkt eine Impedanztransformation von Kurzschluss auf Leerlauf, da für den Reflexionsfaktor T in Abhängigkeit von der elektrischen Länge &THgr; gilt: &Ggr;(&THgr;) = &Ggr;Lexp(–j2&THgr;)

In 4 ist die Impedanztransformation von Kurzschluss (Z1) auf Leerlauf (Z2) in einem Smith-Diagramm graphisch dargestellt. Im Idealfall geht die Kurzschluss-Impedanz Z1 gegen Null und die Leerlauf-Impedanz Z2 gegen Unendlich. In der praktischen Anwendung handelt es sich bei Z1 jedoch um eine gegenüber der System-Impedanz sehr niedrige Impedanz und bei Z2 um eine gegenüber der System-Impedanz sehr hohe Impedanz.

Wenn die Hochfrequenzleitung L1 des obigen Beispiels nun eine Länge von &lgr;/4 der Signal-Hochfrequenz aufweist, wird der Kurzschluss (Z1) an dem Parallel-Kondensator C1 auf Leerlauf (Z2) transformiert. Durch diesen Leerlauf wird die Funktion der Schaltung nur unwesentlich beeinflusst.

In einem einfachen Zahlenbeispiel ergibt sich bei einer Signal-Hochfrequenz von 77 GHz und einer effektiven Dielektrizitätskonstante &egr;r,eff von 3,9 für die Hochfrequenzleitung L1 eine Länge von 493 &mgr;m.

In 5 ist ein weiteres Ausführungsbeispiel dargestellt. Ein zusätzlicher zwischen die integrierte Schaltung und den Knotenpunkt der Signalleitung und der Hochfrequenzleitung L1 geschalteter Reihen-Kondensator C2 bewirkt hierbei eine gleichspannungsmäßige Entkopplung zwischen dem Signal-Pad und der integrierten Schaltung.

6 zeigt ein weiteres Ausführungsbeispiel bei dem auf den Parallel-Kondensator C1 verzichtet werden kann, wenn die ESD-Elemente D1 und D2 als verlustarme Kondensatoren modelliert werden können. Die in einem Smith-Diagramm in 7 dargestellte kapazitive Impedanz Z1 der ESD-Elemente wird hier mit Hilfe einer Hochfrequenzleitung L1, deren Länge größer als &lgr;/4 ist, auf einen Leerlauf (Impedanz Z2) transformiert.

Ein einfaches Zahlenbeispiel zeigt, dass eine Gesamtkapazität der ESD-Elemente von 100 fF in einem 50&OHgr; System eine normierte Impedanz von (0 – j0,413) ergibt, welche wiederum der Phase eines Reflexionsfaktors von –135° entspricht. Für eine Transformation auf einen Leerlauf ist daher eine elektrische Länge der Hochfrequenzleitung L1 von 112,5° erforderlich, was bei einem effektiven Elektrizitätskoeffizienten &egr;r,eff von 3,9 wiederum einer Hochfrequenzleitungslänge von 616,5 &mgr;m entspricht.

In 8 ist ein weiteres Ausführungsbeispiel der Erfindung dargestellt. Hierbei können die ESD-Elemente D1 und D2 und der Parallel-Kondensator C1 gemeinsam für mehrere Signal-Pads genutzt werden, wenn die Verbindung zwischen den gemeinsamen ESD-Elementen D1 und D2 und den Signal-Pads jeweils über getrennte Signalleitungen erfolgt. Das in 8 dargestellte Beispiel ist besonders bei Ein- und Ausgängen vorteilhaft, die gegenphasige Signale führen, wodurch sich an der Verbindung der Hochfrequenzleitungen L1 und L2 ein virtueller Nullpunkt ergibt und der Parallel-Kondensator C1 dadurch entfallen könnte.

In 10 wird ein weiteres Ausführungsbeispiel einer Anwendung der Erfindung dargestellt. Bei integrierten Mikrowellenschaltungen werden z.B. häufig Netzwerke zur Impedanzanpassung vorgesehen, die mit Hilfe von Spulen, Kondensatoren und Leitungen realisiert werden können. Hierbei wird die Hochfrequenzleitung L1 als Teil eines Anpassungsnetzwerks verwendet, wobei die Länge der Hochfrequenzleitung L1 ungleich &lgr;/4 der Signal-Hochfrequenz gewählt wird. Das in 11 dargestellte Smith-Diagramm zeigt, dass bei einer Länge kleiner &lgr;/4 z.B. ein induktives Verhalten (Z2) erzielt wird.

9 zeigt ein Beispiel eines solchen Anpassungsnetzwerks, bestehend aus zwei Induktivitäten (Impedanz Xp1 und Xp2) und einem Kondensator (Impedanz Xs). Für die Bemessung der Komponenten gilt z.B.:

Hierbei ist R1 der Quellwiderstand, R2 der Lastwiderstand und Q die Güte des Anpassungsnetzwerks. Ein einfaches Zahlenbeispiel zeigt, dass für eine Frequenz von 77 GHz, einen Quellwiderstand von 50&OHgr;, einen Lastwiderstand von 25&OHgr; und eine Güte von 2 sich folgende Wert ergeben:

Xp1 = 25&OHgr;, entsprechend 51,7 pH;

Xp2 = 20,41&OHgr;, entsprechend 42,2 pH; und

Xs = 32,25&OHgr;, entsprechend 64,1 fF.

Die Impedanz Xp1 kann nun mit Hilfe der Hochfrequenz-leitung L1 realisiert werden, wobei die erforderliche Länge &THgr; mit der Gleichung X = Z0 tan&THgr; berechnet wird. Daraus ergibt sich dann, dass bei einem Wellenwiderstand Z0 von 50&OHgr; die Hochfrequenzleitung L1 eine elektrische Länge von 26,6° hat. Bei einer effektiven Elektrizitätskonstante &egr;r,eff von 3,9 entspricht das einer Länge von 145,5 &mgr;m.

Die Hochfrequenzleitungen der vorliegenden Erfindung können auf den integrierten Schaltungen z.B. als Microstrip-Leitungen oder auch als koplanare Leitungen realisiert werden. 12 zeigt hierbei den prinzipiellen Aufbau einer Microstrip-Leitung, welche aus einer Leitung und einer Massefläche besteht, die durch ein Dielektrikum getrennt sind. Die Abmessungen sind durch die Leiterbreite w, die Höhe der Metallbahn t und die Höhe des Dielektrikums h gegeben. Das Verhalten der Leitung wird dabei durch den Wellenwiderstand und durch die effektive Dielektrizitätskonstante &egr;r,eff beschrieben. Für den Fall w/h < 1 gilt z.B. als Näherung:

In integrierten Schaltungen werden häufig Microstrip-Leitungen in leicht abgewandelter Form verwendet, bei denen die Leitung vollständig von einem Dielektrikum umgeben ist, wie dies z.B. in 13 dargestellt ist. Das Dielektrikum besteht dabei meist aus Siliziumoxid mit einer Dielektrizitätskonstante &egr;r von 3,9. Unter der Voraussetzung, dass sich das elektrische Feld vollständig innerhalb des Dielektrikums befindet, gilt &egr;r,eff = &egr;r. Die Ausbreitungsgeschwindigkeit v auf der Leitung beträgt somit:

Damit ergibt sich die Wellenlänge &lgr; auf der Leitung zu:

Hierbei ist c0 die Lichtgeschwindigkeit im freien Raum und f die Frequenz. In einem einfachen Zahlenbeispiel ergibt sich nun bei einer Frequenz von 77 GHz und für eine effektive Dielektrizitätskonstante &egr;r,eff 3,9 eine Wellenlänge von 1,972 mm.


Anspruch[de]
ESD-Schutzschaltung einer an eine Signalleitung und eine positive und negative Versorgungsspannung angeschlossenen integrierten Schaltung, mit mindestens einem zwischen die Signalleitung und eine der Versorgungsspannungen geschalteten ESD-Element, dadurch gekennzeichnet, dass mit dem ESD-Element eine Hochfrequenzleitung (L1) in Reihe geschaltet ist, welche derart dimensioniert ist, dass bei einer vorbestimmten Signal-Hochfrequenz der Strompfad über das ESD-Element von einer gegenüber der Systemimpedanz niedrigen Impedanz auf eine Impedanz transformiert wird, die sehr hoch gegenüber der Systemimpedanz ist. ESD-Schutzschaltung nach Anspruch 1, dadurch gekennzeichnet, dass mindestens zwei ESD-Elemente (D1, D2) in Reihe zwischen die positive und negative Versorgungsspannung geschaltet und über einen zwischen ihnen vorgesehenen Knotenpunkt und die Hochfrequenzleitung (L1) mit der Signalleitung und über diese mit der integrierten Schaltung verbunden sind. ESD-Schutzschaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Parallel-Kondensator (C1) parallel zu einem der ESD-Elemente (D1, D2) mit der Hochfrequenzleitung (L1) und der positiven oder negativen Versorgungsspannung verbunden ist, wobei die Kapazität des Parallel-Kondensators (C1) so gewählt ist, dass er bei der Signal-Hochfrequenz der integrierten Schaltung eine sehr niedrige Impedanz gegenüber der Systemimpedanz hat und dadurch die Länge der Hochfrequenzleitung (L1) im Wesentlichen ein Viertel der Wellenlänge (&lgr;/4) einer Signal-Hochfrequenz der integrierten Schaltung ist. ESD-Schutzschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Reihen-Kondensator (C2) als Koppelkondensator zwischen den Knotenpunkt der Signalleitung und der Hochfrequenzleitung (L1) und die integrierte Schaltung geschaltet ist. ESD-Schutzschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens zwei Signalleitungen an die integrierte Schaltung angeschlossen sind und diese jeweils über eine Hochfrequenzleitung (L1, L2) und ein ESD-Element (D1, D2) mit der positiven bzw. negativen Versorgungsspannung verbunden sind. ESD-Schutzschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die oder jede Hochfrequenzleitung als Microstrip-Leitung oder koplanare Leitung ausgebildet ist. Anpassungsnetzwerk für eine integrierte Schaltung, zur Impedanzanpassung zwischen einem Signaleingang und der integrierten Mikrowellenschaltung,

dadurch gekennzeichnet, dass

das Anpassungsnetzwerk in eine ESD-Schutzschaltung einer der vorhergehenden Ansprüche derart integriert ist, dass die Funktion mindestens einer der Induktivitäten des Anpassungsnetzwerks durch die Hochfrequenzleitung (L1) der ESD-Schutzschaltung realisiert wird, wobei die Länge der Hochfrequenzleitung ungleich einem Viertel der Wellenlänge (&lgr;/4) einer Signal-Hochfrequenz ist.
Halbleitervorrichtung, umfassend:

eine integrierte Schaltung;

eine Ein- und/oder Ausgangsanschlussfläche;

mindestens eine Signalleitung zwischen der Ein- und/oder Ausgangsanschlussfläche und der integrierten Schaltung;

gekennzeichnet durch

eine ESD-Schutzschaltung nach einem der Ansprüche 1 bis 6.
Halbleitervorrichtung, umfassend:

eine integrierte Schaltung;

eine Ein- und/oder Ausgangsanschlussfläche;

mindestens eine Signalleitung zwischen der Ein- und/oder Ausgangsanschlussfläche und der integrierten Schaltung;

gekennzeichnet durch

ein Anpassungsnetzwerk nach Anspruch 7.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com