PatentDe  


Dokumentenidentifikation DE102006023483A1 22.11.2007
Titel Vorrichtung zum Kaltgasspritzen
Anmelder Linde AG, 65189 Wiesbaden, DE
Erfinder Gärtner, Frank, Dr., 22043 Hamburg, DE;
Heinrich, Peter, 82110 Germering, DE;
Kreye, Heinrich, Prof. Dr., 22175 Hamburg, DE;
Richter, Peter, 84431 Heldenstein, DE;
Schmidt, Tobias, 59889 Eslohe, DE
DE-Anmeldedatum 18.05.2006
DE-Aktenzeichen 102006023483
Offenlegungstag 22.11.2007
Veröffentlichungstag im Patentblatt 22.11.2007
IPC-Hauptklasse B05B 7/16(2006.01)A, F, I, 20060518, B, H, DE
IPC-Nebenklasse B05B 7/14(2006.01)A, L, I, 20060518, B, H, DE   
Zusammenfassung Die Erfindung betrifft eine Düse zum Kaltgasspritzen, in welcher Gas und Spritzpartikel beschleunigt werden. Erfindungsgemäß ist die Kaltgas-Spritzdüse an ihrer Innenwand zumindest teilweise beschichtet.

Beschreibung[de]

Die Erfindung betrifft eine Kaltgas-Spritzdüse zur Beschleunigung von Gas und Spritzpartikel, wobei die Düse in Strömungsrichtung von einem konvergenten Abschnitt im Düsenhals in einen divergenten Abschnitt übergeht. Ferner betrifft die Erfindung eine Kaltgasspritzpistole mit einer Kaltgas-Spritzdüse.

Es ist bekannt, auf Werkstoffe unterschiedlichster Art Beschichtungen mittels thermischen Spritzens aufzubringen. Bekannte Verfahren hierfür sind beispielsweise Flammspritzen, Lichtbogenspritzen, Plasmaspritzen oder Hochgeschwindigkeits-Flammspritzen. In jüngerer Zeit wurde ein Verfahren entwickelt, das sog. Kaltgasspritzen, bei welchem die Spritzpartikel in einem "kalten" Gasstrahl auf hohe Geschwindigkeiten beschleunigt werden. Die Beschichtung wird durch das Auftreffen der Partikel auf dem Werkstück mit hoher kinetischer Energie gebildet. Beim Aufprall bilden die Partikel, die in dem "kalten" Gasstrahl nicht schmelzen, eine dichte und fest haftende Schicht, wobei plastische Verformung und daraus resultierende lokale Wärmefreigabe für Kohäsion und Haftung der Spritzschicht auf dem Werkstück sorgen. Ein Aufheizen des Gasstrahls erwärmt die Partikel zur besseren plastischen Verformung beim Aufprall und erhöht die Strömungsgeschwindigkeit des Gases und somit auch die Partikelgeschwindigkeit. Die damit verbundene Gastemperatur beträgt bis hin zu 800 °C (und mehr), liegt aber deutlich unterhalb der Schmelztemperatur des Beschichtungswerkstoffs, so dass ein Schmelzen der Partikel im Gasstrahl nicht stattfindet. Eine Oxidation und/oder Phasenumwandlungen des Beschichtungswerkstoffes lassen sich somit weitgehend vermeiden. Die Spritzpartikel werden als Pulver zugegeben, wobei das Pulver üblicherweise zumindest teilweise Partikel mit einer Größe von 1 bis 50 &mgr;m umfasst. Ein solches Verfahren und eine Vorrichtung zum Kaltgasspritzen sind in der europäischen Patentschrift EP 0 484 533 B1 im einzelnen beschrieben. Als Düse wird dabei eine de Laval'sche Düse benutzt, im Folgenden kurz Lavaldüse genannt. Lavaldüsen sind axialsymmetrisch und bestehen aus einem konvergenten und einem sich in Stromrichtung daran anschließenden divergenten Abschnitt. Die Kontur der Düse muss im divergenten Bereich in bestimmter Weise geformt sein, damit es nicht zu Strömungsablösungen kommt und keine Verdichtungsstöße auftreten und die Gasströmung den Gesetzen nach de Laval gehorcht. Charakterisiert sind Lavaldüsen durch diese Kontur und die Länge des divergenten Abschnitts und des weiteren durch das Verhältnis des Austrittquerschnitts zum engsten Querschnitt. Der engste Querschnitt der Lavaldüse heißt Düsenhals. Derzeit übliche Vorrichtungen zum Kaltgasspritzen sind auf Drücke von etwa 1 MPa bis zu einem Maximaldruck von 3,5 MPa und Gastemperaturen bis zu etwa 800 °C ausgelegt. Das erhitzte Gas wird zusammen mit den Spritzpartikeln in einer Lavaldüse entspannt. Während der Druck in der Lavaldüse abfällt, steigt die Gasgeschwindigkeit auf Werte bis zu 3000m/s und die Partikelgeschwindigkeit auf Werte bis zu 2000 m/s. Als Prozessgas werden Stickstoff, Helium, Argon, Luft oder deren Gemische verwendet. Meist kommt jedoch Stickstoff zur Anwendung, höhere Partikelgeschwindigkeiten werden mit Helium oder Helium-Stickstoff-Gemischen erreicht.

In der Praxis ist es jedoch nicht möglich, das Gas und die Partikel bis auf die gewünschte, für das Kaltgasspritzen maximal mögliche Temperatur aufzuwärmen, da die Partikel bei zu hoher Temperatur an der Düseninnenwand anbacken. Durch das Anbacken der Partikel an der Düseninnenwand setzt sich die Düse innerhalb kurzer Zeit zu und ist dann nicht mehr zu verwenden. Auch ändern sich durch das Anbacken die Kontur und damit die Eigenschaften der Düse. Die Neigung, an der Düseninnenwand anzubacken ist für die kleineren Partikel des Spritzpulvers besonders ausgeprägt. Jedoch ist eine gewisse Größenverteilung innerhalb des Spritzpartikelpulvers bei der Herstellung nicht zu vermeiden. Zudem erhöht sich mit steigender Anforderung an die Größenselektion der Preis des Spritzpulvers wesentlich.

Die Geschwindigkeiten, welche Gas und Spritzpartikel beim Austreten aus der Lavaldüse aufweisen, sind jedoch in erster Linie durch die geometrische Dimensionierung der Lavaldüse bestimmt. Aus den charakteristischen Größen der Lavaldüse folgt, dass der Innendurchmesser am Düsenhals möglichst klein sein muss, da die beiden Größen Austrittsquerschnitt und Länge des divergenten Abschnitts aufgrund von Erfordernissen an die äußeren Abmessungen festgelegt sind. Derzeit werden Düsen mit einem Durchmesser am Düsenhals zwischen 2 und 3 mm gefertigt. Da die Konturen für die Lavaldüse im Innenkörper entstehen müssen und es folglich um eine Bohrung handelt, ist die Fertigung aufgrund der notwendigen Dimensionen äußert problematisch. Beispielsweise geschieht die Fertigung durch Senkerodieren in einen Rundling oder durch ein Feingussverfahren, bei welchem die Kontur der Düse mit Hilfe eines Modells angefertigt wird. Um Düsen mit komplexer Kontur, mit beliebigem Expansionsverhältnis und ausreichender Länge herstellen zu können, ist es bekannt, Düsen aus zwei Halbschalen zu fertigen. Die Düsenkontur wird dabei mit hoher Präzision durch Fräsen in die jeweiligen Halbschalen eingebracht und die beiden fertig bearbeiteten Halbschalen werden zu einer Düse zusammengesetzt. Als Düsenwerkstoff wird üblicherweise Stahl verwendet, da Stahl ein gut zu bearbeitendes Material ist. In manchen Fällen wird als Düsenwerkstoff auch das bestimmte Vorteile aufweisende Hartmetall Wolframkarbid-Kobalt verwendet, da die Neigung der Partikel an der Düseninnenwand anzubacken bei Düsen aus Wolframkarbid-Kobalt sehr viel geringer ist als bei Düsen aus Stahl. Wolframkarbid-Kobalt ist jedoch ein schwierig zu bearbeitender Werkstoff, so dass die Fertigung einer Düse aus diesem Hartmetall sehr schwierig und aufwendig ist. Auch ist es aus fertigungstechnischen Gründen für Wolframkarbid-Kobalt nicht möglich, den divergierenden Abschnitt der Lavaldüse bei gegebenen Düsenhalsdurchmesser in der gewünschten Länge herzustellen.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Kaltgas-Spritzdüse anzugeben, bei welcher das Anbacken der Partikel an der Düseninnenwand keine Rolle spielt und welche einfach zu fertigen ist. Auch soll mit der anzugebenden Düse die Temperaturen, auf welche sich Gas beziehungsweise Spritzpartikel erwärmen lassen, zu den gewünschten höheren Temperaturen hin erweitern lassen, ohne dass die Partikel aufgrund der vorliegenden Partikelgrößezusammensetzung des Pulvers an der Düsenwand anbacken.

Diese Aufgabe wird dadurch gelöst, dass die Düse an ihrer Innenwand zumindest teilweise beschichtet ist. Durch die Beschichtung der Düse an ihrer Innenwand steht eine Kaltgas-Spritzpistole zur Verfügung, bei welcher das Anbacken der Partikel an der Düseninnenwand wirkungsvoll unterbunden ist. Die Beschichtung erfolgt somit mit einem Material, welches eine geringe Neigung zur Reaktion mit dem Werkstoff der Spritzpartikel aufweist. Zudem ist die erfindungsgemäße Düse einfach zu fertigen, da der Düsenkörper aus einem gut zu bearbeitenden Material, wie beispielsweise Stahl, ist und die Beschichtung das Anbacken der Spritzpartikel unterbindet. Folglich ist auch das Problem des leichten Zusetzens der Düse durch die erfindungsgemäße Düse gelöst. Zudem ist es möglich, die erfindungsgemäße Düse mit jeder gewünschten Kontur sowie in allen wünschenswerten Abmessungen und Abmessungsverhältnissen herzustellen. insbesondere ist auch die Länge des divergenten Düsenabschnitts nahezu beliebig groß herstellbar, und dies auch bei kleinem Düsenhals. Da mit der erfindungsgemäßen Düse das Anbacken wirkungsvoll unterbunden wird, sind im Vergleich zu unbeschichteten Düsen höhere Temperaturen für Gas und Spritzpartikel möglich. Dies verbessert sowohl die Eigenschaft der Spitzschicht als auch die Auftragsrate. Ferner sind nun auch Spritzwerkstoffe einsetzbar, die bisher nicht verwendet werden konnten, und auch eine Verwendung von gröberen Pulvern als bisher üblich ist möglich. So können mit der erfindungsgemäßen Düse nicht nur, wie bisher üblich Partikel mit bis zu 50 &mgr;m gespritzt werden, sondern Partikel mit bis zu 100 &mgr;m, teilweise sogar mit Partikelgrößen von bis zu 250 &mgr;m. Weiterhin ist es von Vorteil, dass, wenn die Düse Verschleißerscheinungen zeigt, die Beschichtung auf einfache Weise ausgebessert oder nach einer Reparatur der Düsenkörpers erneuert werden kann.

Vorteilhafterweise enthält die Beschichtung ein hartes, erosions- und verschleißbeständiges Material. Ein derartiges Material geht bei den in der Düse vorliegenden Temperatur (durch das Gas- und die Spritzpartikelerwärmung heizt sich auch die Düse auf) keine oder zumindest nahezu keine Reaktion mit den Spritzpartikeln ein. Es tritt keine Reaktion ein bei einer Temperatur, die größer als das 0,5-fache der Schmelztemperatur des Spritzwerkstoffes in Kelvin ist. Das keine Reaktion erfolgt ist beispielsweise erkennbar an den in Tabellenwerken zusammengestellten Zustandsschaubildern, die z.B. „Binary alloy Phase diagrams" von T.B. Massalski, H. Okamoto, ASM International, 1992 zu finden sind, oder den positiven Mischungsenthalpien, die Tabellenwerken zu thermochemischen Daten, z.B. „Thermochemical data of pure substances", von I. Karin, G. Platzki, VCH, Weinheim, New York, 1995 (ISBN: 3527287450) entnommen werden können. Zusammenfassend ist zu sagen, dass die Beschichtung besondere Vorteile aufweist, wenn sie sehr hart ist, gut auf dem Düsenwerkstoff haftet und eine glatte Oberfläche besitzt. Eine glatte Oberfläche wird erreicht, indem entweder die Düsenkontur vor dem Aufbringen der Beschichtung poliert wird und anschließend mit sehr gleichmäßigem Auftrag beschichtet wird oder indem nach dem Beschichtungsauftrag poliert wird.

Mit Vorteil ist die Düse zumindest im Bereich des Düsenhalses beschichtet. Vom Anbacken ist vor allem der Bereich um den Düsenhals betroffen, da dieser die Engstelle für Gas- und Spritzpartikel bildet. Zumindest in diesem Bereich um den Düsenhals ist nun vorteilhafterweise die Beschichtung angebracht. Dadurch wird das Anbacken wirkungsvoll unterbunden.

In vorteilhafter Ausgestaltung der Erfindung ist die Düse aus zwei Halbschalen gefertigt. Durch Zusammensetzen der beiden Halbschalen mit entsprechender Kontur entsteht die Düse. Vorteilhafterweise werden die beiden Halbschalen im zerlegten Zustand beschichtet und nach dem Aufbringen der Beschichtung passgenau zusammengefügt. Durch die Aufteilung der Düse in zwei Halbschalen ist die Fertigung der Düsen und insbesondere die Fertigung von Düsen mit sehr langem divergenten Abschnitt gut zu bewerkstelligen.

Mit besonderem Vorteil enthält die Beschichtung ein Metall, insbesondere Chrom oder eine Metallverbindung oder eine Oxitkeramik. Von den Metallverbindungen eignen sich besonders die Karbide, Nitride und Boride, also die Verbindungen von Metallen mit Kohlenstoff, Stickstoff oder Bor, wie beispielsweise TiB2, TiC, TiN, TiCN, TiB2, TiBN, TiAlN, CrN, CrCN, ZrC, ZrN, oder auch MiSi2 und WSi2 und auch die Metalloidverbindungen, wie beispielsweise Bornitrid oder Borkarbid. Auch die sogenannten diamond-like-carbon oder DLC-Schichten sind geeignet. Von den Oxitkeramiken sind besonders TiO2, ZrO2 oder Al2O3 geeignet. Auch Phosphidbeschichtungen, wie beispielsweise NiP, sind möglich. Derartige Beschichtungen zeichnen sich dadurch aus, dass sie sehr hart, erosions- und verschleißbeständig sind.

Mit besonderen Vorteilen ist die Beschichtung eine elektrolytisch oder durch Abscheidung aus der Gasphase aufgebrachte Beschichtung. Eine elektrolytisch aufgebrachte Beschichtung heißt auch galvanisch. Als Beschichtungsverfahren aus der Gasphase können dafür beispielsweise das PVD-Verfahren (Physical Vapour Deposition) und das CVD-Verfahren (Chemical Vapour Deposition) angewandt werden. Ferner kann es auch möglich sein, die Beschichtung durch thermisches Spritzen aufzubringen.

In einer vorteilhaften Ausgestaltung der Erfindung ist die Beschichtung aus zwei oder mehreren Lagen aufgebaut. Durch einen Lagenaufbau der Beschichtung kann in bestimmten Fällen die Haftung der Beschichtung auf dem Grundwerkstoff verbessert werden. Die untere Lage dient dabei als Haftvermittler. Auch auf die Eigenschaften der Beschichtung kann durch den Schichtaufbau Einfluss genommen werden.

Mit besonderem Vorteil weist die Düse eine Gas-/Luft- oder Wasserkühlung und/oder Kühlrippen auf. Mit einer Düsenkühlung wird die beim Betrieb der Kaltgas-Spritzdüse entstehende Wärme sofort abgeführt, so dass die Temperaturen für Gas und Spritzpartikel weiter erhöht werden können, ohne dass es zu Anbackungen kommt. Die Anbringung einer Düsenkühlung unterstützt somit die Vorteile der Erfindung.

Vorteilhafterweise weist die Düse einen Durchmesser am Düsenhals von 1 bis 6 mm und ein Expansionsverhältnis, welches durch das Verhältnis von Fläche am Düsenaustritt zu Fläche am Düsenhals definiert ist, von 3 bis 15 und weiterhin eine das 30- bis 100-fache des Durchmessers am Düsenhals aufweisende Länge auf. Durch eine Beschichtung derartig dimensionierter Kaltgas-Spritzdüsen werden die Vorteile hinsichtlich des Kaltgas-Spritzverfahrens in besonderer Weise unterstützt.

Ferner wird die Aufgabe durch eine Kaltgasspritzpistole mit einer Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 9 gelöst.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines Ausführungsbeispiels näher erläutert. Gemäß diesem Ausführungsbeispiel wird eine Kaltgas-Spritzdüse, welche aus zwei Halbschalen besteht, beschichtet. Die beiden Halbschalen der Düse sind aus einem Stahl gefertigt und die Innenfläche der beiden Hälften mit Chrom beschichtet. Dabei kann Nickel als Haftvermittler eingesetzt werden. Die Aufbringung des Chroms als sog. Hartchrom mit einer Härte nach Vickers von typischerweise 800 HV und mehr erfolgt durch elektrolytische (galvanische) Abscheidung. Die Dicke der Chromschicht kann dabei 2 bis 100 &mgr;m betragen. Im Falle von Kupfer als Spritzwerkstoff zeigt eine solche mit Hartchrom beschichtete Stahldüse eine ähnlich geringe Neigung zu Anbackungen wie eine Düse, die aus einem Hartmetall gefertigt wurde. Durch Verwendung einer erfindungsgemäßen Kaltgas-Spritzdüse kann die Aufprallgeschwindigkeit eines 20 &mgr;m Kupferpartikels von 630 m/s auf 700 m/s weiter gesteigert werden, da die erfindungsgemäße Düse mit sehr langem divergenten Abschnitt gefertigt werden kann und das Anbacken der Spritzpartikel wirkungsvoll unterbunden ist. Die Vorteile zeigen sich nicht nur beim Spritzen von Pulver aus Kupfer sondern beispielsweise auch beim Spritzen mit Pulvern aus Stahl, Aluminium oder Aluminiumlegierungen.


Anspruch[de]
Kaltgas-Spritzdüse zur Beschleunigung von Gas und Spritzpartikeln, wobei die Düse in Strömungsrichtung von einem konvergenten Abschnitt im Düsenhals in einen divergenten Abschnitt übergeht dadurch gekennzeichnet, dass die Düse an ihrer Innenwand zumindest teilweise beschichtet ist. Kaltgas-Spritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung ein hartes, erosions- und verschleißbeständiges Material enthält. Kaltgas-Spritzdüse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Düse zumindest im Bereich des Düsenhals beschichtet ist. Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Düse aus zwei Halbschalen gefertigt ist. Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Beschichtung ein Metall, insbesondere Chrom, oder eine Metallverbindung oder eine Oxitkeramik enthält. Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Beschichtung eine elektrolytisch oder durch Abscheidung aus der Gasphase aufgebrachte Beschichtung ist. Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Beschichtung aus zwei oder mehreren Lagen aufgebaut ist. Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Düse eine Gas-/Luft- oder Wasserkühlung und/oder Kühlrippen aufweist. Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Düse einen Durchmesser am Düsenhals von 1 bis 6 mm und ein Expansionsverhältnis, welches durch das Verhältnis von Fläche am Düsenaustritt zu Fläche am Düsenhals definiert ist, von 3 bis 15 und weiterhin eine das 30- bis 100-fache des Durchmessers am Düsenhals aufweisende Länge aufweist. Kaltgasspritzpistole mit einer Kaltgas-Spritzdüse nach einem der Ansprüche 1 bis 9.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com