PatentDe  


Dokumentenidentifikation DE10237546B4 29.11.2007
Titel Röntgen-Computertomographie-Gerät mit Filter
Anmelder Siemens AG, 80333 München, DE
Erfinder Bressel, Wolfgang, 91054 Erlangen, DE
DE-Anmeldedatum 16.08.2002
DE-Aktenzeichen 10237546
Offenlegungstag 11.03.2004
Veröffentlichungstag der Patenterteilung 29.11.2007
Veröffentlichungstag im Patentblatt 29.11.2007
IPC-Hauptklasse G01N 23/06(2006.01)A, F, I, 20051017, B, H, DE
IPC-Nebenklasse G01T 1/29(2006.01)A, L, I, 20051017, B, H, DE   H05G 1/02(2006.01)A, L, I, 20051017, B, H, DE   

Beschreibung[de]

Die Erfindung betrifft ein Röntgen-Computertomographie-Gerät mit einer Röntgenröhre, bestehend aus einer Schräganode, vorzugsweise einer rotierenden Schräganode, und einer Kathode zur Erzeugung eines gefächerten Röntgenstrahles, wobei der Strahlengang durch Kollimator-Blenden in seiner Ausbreitungsrichtung begrenzt wird, weiterhin mit einem mehrzeilig ausgebildeten Detektor, dessen Zeilen in z-Richtung aneinander gereiht sind und sich jeweils senkrecht zu dieser z-Richtung erstrecken, und wobei der Detektor die, gegebenenfalls durch ein zu untersuchendes Objekt geschwächte, Röntgenstrahlung ortsbezogen detektiert, weiterhin mit einer Rechen-, Steuer- und Bildaufbereitungseinheit zum Betrieb der Anlage und Erstellung der Tomographie-Aufnahmen.

Solche Röntgen-Computertomographie-Geräte sind allgemein bekannt. Deren Aufbau ist ausführlich in der Veröffentlichung „Bildgebende Systeme für die medizinische Diagnostik" Heinz Morneburg, ISBN 3-89578-002-2, insbesondere in den Kapiteln 5 und 9, beschrieben. Der Offenbarungsgehalt dieser Literaturstelle wird vollinhaltlich in diese Anmeldung übernommen.

Die Erfindung bezieht sich auf eine besondere Art der Röntgen-Computertomographie-Geräte, die einen mehrzeiligen Detektor aufweisen, so dass bei einem einzigen Scanvorgang mehrere Schnittaufnahmen gleichzeitig erstellt werden können. Ein solches CT-Gerät ist beispielsweise aus der Offenlegungsschrift DE 199 35 093 A1 der Anmelderin bekannt. Aufgrund der Ausdehnung des mehrzeiligen Detektors in z-Richtung der Anlage treten Intensitätsänderungen der diagnostischen Röntgenstrahlung der verwendeten Schräganode zu Tage, die aufgrund der ungleichen Intensitätsverteilung in z-Richtung zu verschlechterten Bildergebnissen führen.

Bezüglich der Ausbildung der Strahlungsintensität des Röntgenstrahls einer Schräganode wird beispielhaft auf die Patentschrift US 4,321,471, insbesondere die 2a und 2b, hingewiesen. Die Intensitätsverteilung der Röntgenstrahlung weist hierbei eine keulenartige Form auf, so dass sich die Intensität über die Detektorenzeilen hinweg verändert. Dieser Effekt ist unter dem Namen „Heel-Effekt" bekannt. Aus der Patentschrift US 6,327,329 B1 ist es bekannt, die durch den Heel-Effekt auftretende Intensitätsveränderung über die Detektorzeilen hinweg durch elektronische Mittel bei der Bildaufbereitung zu berücksichtigen, indem die Veränderung der Röntgen-Intensität in z-Richtung elektronisch normiert wird, um zu besseren Bildergebnissen zu gelangen.

Ein solches Verfahren erfordert einen großen Programmieraufwand und Rechenkapazität im Computertomographen.

Es ist daher Aufgabe der Erfindung, eine einfachere Möglichkeit zu finden, den Heel-Effekt einer Schräganode für einen Röntgen-Computertomographen zu vermeiden.

Diese Aufgabe der Erfindung wird durch die Merkmale des ersten Patentanspruches gelöst. Vorteilhafte Ausbildungen ergeben sich aus den Unteransprüchen.

Der Erfinder hat erkannt, dass es durch den Einsatz eines einfach geschalteten Filters zwischen dem Detektor und der Röntgenquelle möglich ist, den Röntgenstrahl soweit auszugleichen, dass ein mehrzeiliger Detektor über die gesamte Anzahl seiner Zeilen eine lineare und konstante Intensitätsverteilung der diagnostischen Röntgenstrahlung erhält. Hierdurch werden nachträgliche elektronische Ausgleichsmaßnahmen nicht mehr notwendig, so dass der Computertomograph mit einer geringeren Rechenkapazität auskommt, beziehungsweise die Erstellung der aufbereiteten Bilder schneller erfolgen kann.

Demgemäß schlägt der Erfinder vor, das an sich bekannte Röntgen-Computertomographie-Gerät mit einem mehrzeilig ausgebildeten Detektor gemäß dem Oberbegriff des Anspruches 1 dahingehend zu verbessern, dass zwischen der Anode der Röntgenröhre und dem mehrzeiligen Detektor mindestens ein erstes Filter angeordnet ist, das bezüglich seines in z-Richtung ortsabhängigen Schwächungsverhaltens derart ausgebildet ist, dass die richtungsabhängige Intensitätsänderung der Röntgenstrahlung in z-Richtung, zumindest bezogen auf die Intensitätsmittelwerte der Detektorzeilen, ausgeglichen wird.

Vorteilhaft kann hierbei dieses Filter in einer ersten Näherung keilförmig ausgebildet werden. Allerdings ist auch ein nichtlinearer Schichtdickenverlauf des Filters möglich, so dass ein optimaler Ausgleich der Intensitätsverteilung der Röntgenstrahlung im Strahlengang stattfindet.

Des weiteren kann das Filter auch stufenförmig ausgebildet werden, wobei jeder Detektorzeile eine individuelle Stufe des Filters zugeordnet werden kann, da kleine Intensitätsänderungen im Bereich einer einzigen Zeile in z-Richtung die Bildqualität nicht wesentlich verschlechtern.

Vorteilhaft kann es auch sein, wenn mindestens ein zweites Filter vorgesehen ist, das derart ausgebildet ist, dass auch die Intensitätsänderung senkrecht zur z-Richtung, das heißt in Längsrichtung der Detektorzeilen, so beeinflusst wird, dass dieser vergleichmäßigt wird. Hier können auch das erste und das zweite Filter miteinander in einem Filtereinsatz kombiniert werden.

Grundsätzlich ist es vorteilhaft, zumindest das erste Filter im Strahlengang im Bereich der Röntgenröhre anzuordnen, da hierdurch keine unnötige Dosis den zu untersuchenden Körper belastet, sondern vorher ausgefiltert wird. Dies erfordert jedoch eine äußerst präzise Ausbildung und Justierung des Filters, da der Sektor, in dem die Intensitätsänderung vorgenommen werden muss, sehr klein ist. Es kann daher vorteilhaft sein, das Filter erst unmittelbar vor dem eigentlichen Detektor anzubringen, wodurch sich aufgrund der größeren Entfernung zum Focus der Röntgenquelle und damit des größeren Kreisbogens auch geringere Anforderungen an die Präzision der geometrischen Ausführung des Filters ergeben.

Wird das Filter im Bereich der Röntgenröhre, also zwischen Anode und zu untersuchendem Objekt, angeordnet, so kann dieser erfindungsgemäße Filter auch in einen an sich vorhandenen Extrafokal-Filter oder in einen Wedge-Filter integriert werden.

Als Filtermaterialien kommen insbesondere Metalle wie beispielsweise Kupfer und Aluminium in Betracht, wobei bevorzugt ein Material verwendet werden sollte, welches zumindest im wirksamen Spektralbereich frei von Absorptionslinien sein sollte. Wird das Filter in einen Wedge-Filter integriert, so kann hierfür das im Wedge-Filter übliche gewebeähnliche Material verwendet werden; ein Beispiel hierfür ist das häufig verwendete Teflon, das auch nach hohen Dosisbelastungen stabil bleibt.

Weitere Ausgestaltungen der Erfindung ergeben sich z. B. aus den Ansprüchen und der nachfolgenden Beschreibung der Ausführungsbeispiele unter Bezugnahme auf die Zeichnungen.

Im folgenden wird die Erfindung anhand der Figuren näher beschrieben. Es stellen im einzelnen dar:

1: Schematische Darstellung eines mehrzeiligen CT's mit keilförmigem Filter im Bereich der Röntgenröhre;

1a: Schnitt A-A aus 1;

2: Schematische Darstellung eines mehrzeiligen CT's mit stufenförmigem Filter im Bereich der Röntgenröhre;

3: Schematische Darstellung eines mehrzeiligen CT's mit im Extrafokalfilter integriertem, keilförmigem Filter;

4: Schematische Darstellung eines mehrzeiligen CT's mit im Extrafokalfilter integrierten stufenförmigen Filter unmittelbar vor den Detektorzeilen.

Die 1 zeigt eine stark schematisierte Darstellung eines Computertomographen (CT) mit einer Röntgenröhre, bestehend aus einer schrägen Drehanode 11 und einer Kathode 12. Die zwischen Drehanode 11 und der Kathode 12 angelegte Hochspannung erzeugt ein elektrisches Feld, durch welches die Elektronen von der Kathode 12 zu einem Focus F auf der Drehanode 11 beschleunigt werden und beim Auftreffen auf die massive Drehanode Bremsstrahlung aussenden. Die hieraus resultierende Strahlenkeule wird durch die Blende 20 als fächerförmiger Strahl soweit begrenzt, dass gerade der darunter liegende Detektor 14 ausgeleuchtet wird. Außerdem ist im Strahlengang ein Wedge-Filter 13 zur Anpassung der Strahlung an das zu durchleuchtende Objekt angeordnet. Der Detektor 14 besteht aus neun Zeilen 1 bis 9, die jeweils gleichzeitig einen Scanvorgang für neun Bildebenen durchführen. Wird der den Wedge-Filter 13 durchdringende Röntgenstrahl ohne weitere Maßnahmen dem mehrzeiligen Detektor 14 zugeführt, so ergibt sich für die einzelnen Zeilen 1 bis 9 eine Intensitätsverteilung, wie sie in dem Diagramm unterhalb der Schemadarstellung in der gestrichelt gezeigten Intensitätsfunktion 17 dargestellt ist.

Erfindungsgemäß ist in der 1 zwischen dem 9-zeiligen Detektor 14 und der Anode im Bereich des Strahlenganges ein keilförmiges Filter 15 eingefügt worden, das die veränderliche Intensität über die neun Zeilen des mehrzeiligen Detektors so egalisiert, dass sich beim Detektor 14 eine ebene Intensitätsverteilung entsprechend der Kurve 18 ergibt. Es ist hierbei anzumerken, dass eine einfache keilförmige Form des Filters 15 keine 100 %-ige Glättung des Intensitätsverlaufes erzeugt, jedoch in guter Näherung die großen Variationen der Intensitätsverteilung egalisieren kann.

Die 1a zeigt zudem den Schnitt A-A durch das CT aus der 1. In dieser Ansicht zeigt sich die Ausbildung des Wedge-Filters 13 anschaulicher als in der 1. Der Detektor 14 ist entlang der Detektorzeile 5 geschnitten, so dass die einzelnen zeilenförmig angeordneten Detektorelemente hierin erkennbar werden.

Es ist darauf hinzuweisen, dass die schematisch dargestellten Fächerwinkel der Strahlung aus den 1 und 1a nicht proportional zueinander dargestellt sind. In der Realität ist die Ausdehnung eines Detektors in z-Richtung selbst bei mehrzeiligen Detektoren wesentlich geringer als in die Längsrichtung der Detektorzeilen.

Die 2 zeigt eine ähnliche Ausführung eines Computertomographen mit seiner Röntgenröhre und dem Filter 15, wobei dieser hier stufenförmig ausgebildet ist. Jede Stufe des Filters 15 deckt eine bestimmte Detektorzeile ab und verläuft in sich eben mit konstanter Dicke. Hierdurch ergibt sich ein etwa sägezahnförmiges Muster der Intensitätsverteilung, wie es in dem Intensitätsverlauf 18 unterhalb der schematischen Darstellung des Computertomographen gezeigt ist. Da jede Detektorzeile – bezogen auf die z-Richtung – jeweils einen Mittelwert der Intensität für seine gesamte Breite angibt, ist es hierbei lediglich wesentlich, dass die Mittelwerte der einzelnen Detektorzeilen über die gesamte z-Richtung konstant bleiben. Die Herstellung eines solchen Filters ist insgesamt mechanisch einfacher durchführbar, so dass die Herstellung preisgünstiger zu verwirklichen ist.

Die 3 zeigt schließlich eine schematische Darstellung eines Computertomographen, bei dem das keilförmige Filter 15 – welches auch stufenförmig ausgebildet werden kann – in den Wedge-Filter 13 integriert ist und insgesamt ein einziges Filter im Bereich der Röntgenröhre darstellt. Der Effekt einer solchen Filterung entspricht den in den 1 uns 2 geschilderten Zuständen.

Die 4 zeigt schließlich eine grundsätzlich geänderte räumliche Anordnung des Filters 15. In dieser Figur ist das Filter 15 in unmittelbarer Nähe des mehrzeiligen Detektors 14 angeordnet. Da der Röntgenstrahl in diesem Bereich schon wesentlich stärker aufgefächert ist, als im Bereich unmittelbar an der Röntgenröhre, sind hier die geometrischen Anforderungen an die Ausbildung des Filters weniger hoch anzusetzen, so dass auch mit etwas geringerer Präzision eine sehr genaue Egalisierung der Intensitätsverteilung erreicht werden kann. Es ist allerdings anzumerken, dass eine derartige Ausgestaltung eines Filters sich zwar für die Untersuchung toter Gegenstände eignen kann, jedoch aufgrund der erhöhten Strahlenbelastung des zu untersuchendes Objektes nicht im Bereich der Humanmedizin angewendet werden sollte.

Insgesamt wird also durch die Erfindung, bei der ein Röntgen-Computertomographie-Gerät mit einem mehrzeilig ausgebildeten Detektor, zwischen der Anode der Röntgenröhre und dem mehrzeiligen Detektor mindestens ein Filter aufweist, das bezüglich seines in z-Richtung ortsabhängigen Schwächungsverhaltens derart ausgebildet ist, dass die richtungsabhängige Intensitätsänderung der Röntgenstrahlung in z-Richtung ausgeglichen wird, auf einfache Art ein Ausgleichs des Heel-Effektes erreicht, wobei die Rechenkapazität des CT's nicht unnötig belastet wird. Darüber hinaus wird durch die Vergleichmäßigung der Intensität über die Zeilen auch ein gleiches Rausch/Signal-Verhältnis erreicht und somit ein homogener Bildeindruck erreicht. Da außerdem die Detektorzeilen mit dieser Maßnahme leichter in ihrem linearen Messbereich betrieben werden können, erhöht sich auch die Qualität der erhaltenen Aufnahmen.


Anspruch[de]
Röntgen-Computertomographie-Gerät mit einer Röntgenröhre, bestehend aus einer Schräganode, vorzugsweise einer rotierenden Schräganode (11), und einer Kathode (12) zur Erzeugung eines gefächerten Röntgenstrahles (19), wobei der Strahlengang durch Kollimator-Blenden (20) in seiner Ausbreitungsrichtung begrenzt wird, weiterhin mit einem mehrzeilig ausgebildeten Detektor (14), dessen Zeilen (1–9) in z-Richtung aneinander gereiht sind und sich jeweils senkrecht zu dieser z-Richtung (=x-Richtung) erstrecken, und wobei der Detektor (14) die, gegebenenfalls durch ein zu untersuchendes Objekt geschwächte, Röntgenstrahlung ortsbezogen detektiert, weiterhin mit einer Rechen-, Steuer- und Bildaufbereitungseinheit zum Betrieb der Anlage und Erstellung der Tomographie-Aufnahmen, dadurch gekennzeichnet, dass zwischen der Anode (11) der Röntgenröhre und dem mehrzeiligen Detektor (14) mindestens ein erstes Filter (15) angeordnet ist, das bezüglich seines in z-Richtung ortsabhängigen Schwächungsverhaltens derart ausgebildet ist, dass die richtungsabhängige Intensitätsänderung der Röntgenstrahlung in z-Richtung ausgeglichen wird. Röntgen-Computertomographie-Gerät gemäß dem voranstehenden Patentanspruch 1, dadurch gekennzeichnet, dass das mindestens eine erste Filter (15) keilförmig ausgebildet ist. Röntgen-Computertomographie-Gerät gemäß dem voranstehenden Patentanspruch 1, dadurch gekennzeichnet, dass das mindestens eine erste Filter (15) mehrstufig ausgebildet ist, wobei vorzugsweise jede Stufe die Strahlung für je eine Detektorzeile beeinflusst. Röntgen-Computertomographie-Gerät gemäß einem der voranstehenden Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein zweites Filter vorgesehen ist, das derart ausgebildet ist, dass richtungsabhängige Intensitätsänderungen der Röntgenstrahlung senkrecht zur z-Richtung ausgeglichen werden. Röntgen-Computertomographie-Gerät gemäß dem voranstehenden Patentanspruch 4, dadurch gekennzeichnet, dass das mindestens eine zweite Filter in das erste Filter (15) integriert ist. Röntgen-Computertomographie-Gerät gemäß einem der voranstehenden Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass das mindestens eine erste Filter (15) im Strahlengang im Bereich der Röntgenröhre angeordnet ist. Röntgen-Computertomographie-Gerät gemäß einem der voranstehenden Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass das mindestens eine erste Filter (15) in einen Extrafokal-Filter integriert ist. Röntgen-Computertomographie-Gerät gemäß einem der voranstehenden Patentansprüche 1 bis 7, dadurch gekennzeichnet, dass das mindestens eine erste Filter (15) in einen Wedge-Filter (13) integriert ist. Röntgen-Computertomographie-Gerät gemäß einem der voranstehenden Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass das mindestens eine erste Filter (15) im Bereich des Detektors (14) angeordnet ist. Röntgen-Computertomographie-Gerät gemäß einem der voranstehenden Patentansprüche 1 bis 10, dadurch gekennzeichnet, dass das erste Filter (15) aus Kupfer oder Aluminium besteht.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com