PatentDe  


Dokumentenidentifikation EP1492406 29.11.2007
EP-Veröffentlichungsnummer 0001492406
Titel VERFAHREN ZUR REINIGUNG EINES PESTIZIDS
Anmelder BASF AG, 67063 Ludwigshafen, DE
Erfinder FINCH, Charles William, Garner, NC 27529, US;
FERSCH, Kenneth Eugene, Apex, NC 27502, US
DE-Aktenzeichen 60316926
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, SI, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 25.03.2003
EP-Aktenzeichen 037172301
WO-Anmeldetag 25.03.2003
PCT-Aktenzeichen PCT/EP03/03079
WO-Veröffentlichungsnummer 2003082013
WO-Veröffentlichungsdatum 09.10.2003
EP-Offenlegungsdatum 05.01.2005
EP date of grant 17.10.2007
Veröffentlichungstag im Patentblatt 29.11.2007
IPC-Hauptklasse A01N 47/24(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse A01N 25/14(2006.01)A, L, I, 20051017, B, H, EP   C07B 63/00(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention relates to methods of purifying pesticides, in particular, the present invention relates to purifying pesticides that include at least one impurity capable of inhibiting crystallization.

Background of the Invention

Pesticides are used in various formulations, including dry formulations, such as wettable powders, granules and tablets. These dry formulations have several advantages, one of which is the ease of use. For good biological efficacy, it is generally desirable that the solid pesticides reduce in size upon mixing with water. However, for active pesticide ingredients with low melting points, this particle size reduction is difficult to achieve due to the lack of defined crystalline structure, thereby frustrating milling the pesticide to achieve particle size reduction. Further, the same problems are shared by mixed preparations containing a pesticide having a low melting point active ingredient and a pesticide having a high melting point active ingredient. As such, there is a need for purified pesticides in order to enhance particle size reduction.

Summary of the Invention

As embodied and broadly described herein, this invention, in one aspect, relates to a method of purifying a pesticide that includes: a) melting a pesticide, wherein the pesticide includes at least one active ingredient and at least one impurity capable of inhibiting crystallization; b) coating the pesticide on a substrate to form a pesticide particle; c) substantially reducing the amount of crystallization inhibiting impurity by an azeotropic method; and d) crystallizing the pesticide.

In another aspect, the present invention includes a method of purifying a pesticide as described above, such that the pesticide has a melting point of not more than about 90°C.

Advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.

Detailed Description

The present invention may be understood more readily by reference to the following detailed description of exemplary embodiments of the invention and the examples included therein.

Before the present compounds, compositions, and methods are disclosed and described, it is to be understood that the pesticide manufacture is not limited to specific synthetic methods of making that may of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.

In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:

The term "pesticide" refers to a mixture of one or more active ingredients and one or more impurities.

By "technical grade active ingredient pesticide" is meant that the mixture of active igre-dients and impurities includes less than 10 wt. % impurities, preferably less than 5 wt. % impurities. The impuries may be any impure ingredient, including but not limited to, reaction by-prodcuts, intermediates, starting materials, and solvents.

"Salt" as used herein includes salts that can form with, for example, amines, metals, alkaline earth metal bases or quaternary ammonium bases, including zwitterions. Suitable metal and alkaline earth metal hydroxides as salt formers include the salts of barium, aluminum, nickel, copper, manganese, cobalt zinc, iron, silver, lithium, sodium, potassium, magnesium or calcium. Additional salt formers include chloride, sulfate, metrab, acetate, carbonate, hydride, and hydroxide.

The present invention includes a method of purifying a pesticide that includes a) melting a pesticide, wherein the pesticide includes at least one active ingredient and at least one impurity capable of inhibiting crystallization; b) coating the pesticide on a substrate to form a pesticide particle; c) substantially reducing the amount of crystallization inhibiting impurity by an azeotropic method; and d) crystallizing the pesticide.

Any pesticide may be employed. In one embodiment, the pesticide is a techical grade active ingredient pesticide "TGAI pesticide." The TGAI pesticde may have a low melting point, including but not limited to, TGAI pesticides with melting points of not more than 120°C, preferably not more than 90°C, and more preferably not more than 80°C.

The active ingredient of the pesticide can be used for controlling harmful insects, acarines, nematodes, fungi, and undesirable plants. In one embodiment, the active ingredient is a 2-[(dihydro)pyrazolyl]-3'-oxymethylene]-anilide of formula (I): wherein - is a single or double bond and the indices and the substituents have the following meanings:

n
is 0, 1, 2, 3 or 4, it being possible for the substituents R1 to be different if n is greater than 1;
m
is 0, 1 or 2, it being possible for the substituents R2 to be different if m is greater than 1;
X
is a direct bond, O or NRa ;
Ra
is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl or cycloalkenyl;
R1
is nitro, cyano, halogen, unsubstituted or substituted alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy or in the case where n is 2, additionally is an unsubstituted or substituted bridge bonded to two adjacent ring atoms and containing three to four members from the group consisting of 3 or 4 carbon atoms, 1 to 3 carbon atoms and 1 or 2 nitrogen, oxygen and/or sulfur atoms, this bridge together with the ring to which it is bonded being able to form a partly unsaturated or aromatic radical;
R2
is nitro, cyano, halogen, alkyl, haloalkyl, alkoxy, alkylthio or alkoxycarbonyl;
R3
is unsubstituted or substituted alkyl, alkenyl or alkynyl; an unsubstituted or substituted, saturated or mono- or diunsaturated ring which, in addition to carbon atoms, can contain one to three of the following heteroatoms as ring members: oxygen, sulfur and nitrogen, or an unsubstituted or substituted, mono- or binuclear aromatic radical which, in addition to carbon atoms, can contain one to four nitrogen atoms or one or two nitrogen atoms and one oxygen or sulfur atom or one oxygen or sulfur atom as ring members;
R4
is hydrogen, unsubstituted or substituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkylcarbonyl or alkoxycarbonyl; and
R5
is alkyl, alkenyl, alkynyl, cycloalkyl or cycloalkenyl, or in the case where X is NRa, additionally is hydrogen;
and salts and esters thereof.

Desirably, in the formula (I), n is 0 or 1; m is 0 or 1; X is O; R1 is unsubstituted or substituted C1 -C4 alkyl, C2 -C4 alkenyl, or C1 -C4 alkoxy; R2 is C1 -C4 alkyl, C1 -C4 haloalkyl, or C1 -C4 alkoxy; R3 is an unsubstituted or substituted benzene; R4 is hydrogen, unsubstituted or substituted C1 -C4 alkyl, C2 -C4 alkenyl, or C1 -C4 alkylcarbonyl; and R5 is C1 - C4 alkyl or C2 -C4 alkenyl.

More desirably, the active ingredient is methyl N-(2-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl}phenyl)N-methoxy carbamate, pyraclostrobin, as represented by formula (II):

The impurity or impurities present in the pesticide or TGAI pesticide may be any impurity including reaction by-products, intermediates, starting materials, and solvents. In one embodiment, the active ingredient chemically decomposes at temperatures within 50°C of the normal boiling point of the crystallizing-inhibiting impurity. Such an impurity makes the pesticide purification difficult. At least one of the impurities should be capable of being removed azeotropically, such as by vacuum distillation, heat, or low pressure evaporation.

The azeotropes may include binary or ternary mixtures comprising water, alcohols, hydrocarbons, substituted hydrocarbons, ethers, esters, organic acids, inorganic acids, ketones, aldehydes, amines, and mixtures thereof. These azeotropes may be formed solely from impurities present in the pesticide or the pesticide may be mixed with a azeotrope-forming compound, such as a solvent as listed above. This mixture may be made either before or after the pesticide is melted.

For example, pyraclostrobin has a melting point of about 64°C. In one embodiment, the TGAI pyraclostrobin includes toluene and water, effectively lowering the melting point to about 40°C. Toluene, which has a boiling point of about 110°C, is capable of forming an azeotrope with water, which has a boiling point of about 84°C. As such, the toluene and water impurities may be removed by azeotropic separation methods.

Azeotropic separation is assisted by coating melted pesticide onto a substrate. Desirably, the coating is a thin film that provides increased surface area for azeotrope transport. As such, any substrate may be used that is compatible with the pesticide. The substrate may be any natural or synthetic organic or inorganic ingredient that facilitates dispersion of the composition or compound. Exemplary substrates include lignin sulfonate, synthetic silicates, silica, urea, lactose, ammonium sulfate, sucrose, sodium chloride, sodium sulfate, clay, diatomite, terra alba, talc, calcium carbonate, attapulgite and water-soluble polymers such as hydroxypropyl cellulose, methyl cellulose, methylethyl cellulose, and polyvinyl alcohol.

The coating process of the melted pesticide onto a substrate can be carried out in different ways:

  1. i) without any solvent
  2. ii) in the presence of an organic solvent. The substrat is dispersed in an organic solvent before the melted active ingredient is added. As organic solvents aromatic or aliphatic hydrocarbons or chlorinated hydrocarbons, alkohols or mixtures of these solvents can be used.
  3. iii) In the presence of water. The substrat is dispersed in water and the melted active ingredient is added

The azeotropic separation is accomplished by heating the pesticide-coated substrate to the appropriate temperature. This may be accomplished by preheating the substrate and adding the melted pesticide to the preheated substrate.

Substantially removing the impurities allows for a quickened crystallization rate. This crystallization may take place by chilling the pesticide to a temperature below that used for the azeotropic separation. In one embodiment, the crystallized pesticide comprises not more than 5 wt. % total impurities; preferably the crystallization inhibiting impurity is reduced to not more than 0.1 wt. %, more preferably to not more than 0.05 wt. % . Adequate crystallization may take from 1 hour to 72 hours, preferably from 1 hours to 24 hours.

After the pesticide is crystallized, the pesticide particle may be reduced in size. Any size reduction method that is suitable may be employed. Exemplary methods include impact methods and fluid energy methods, such as air mill, air jet mill, pin mill, hammer mill, and the like.

The pesticide particles may be reduced to any size feasible. Typically, small particle size is a factor in biological efficacy. Therefore, in preferred embodiments, the pesticide particle size is not more than 50 µm, more preferably not more than 30 µm, and even more preferably not more than 10 µm.

Other optional components may be admixed with pesticides either before or after azeotropic separation to facilitate the application and/or effectiveness of the active ingredient. To this end, optional components that may be added include surfactants, including cationic and anionic surfactants; dispersing agents; wetting agents; antifoaming agents; antimicrobial agents; antioxidants; buffers; dyes; perfumes; stabilizing agents; and water soluble salts.

Pesticides of this invention may also be mixed with other active ingredients, for example fertilizers such as ammonium nitrate, urea, potash, and superphosphate; phytotoxicants and plant growth regulators; safeners; and pesticides. These additional ingredients may be mixed with pesticides either before or after azeotropic separation.

Compositions of the present invention may be present in any effective dry formulation, including, but not limited to, powders; brickettes; granules; tablets; and the like.

Powders, including dusting powders or granules and water dispersible powders, granules or grains contain at least one active ingredient and an inert solid extender or carrier, such as kaolin, bentonite, dolomite, calcium carbonate, talc, powdered magnesia, Fuller's earth, gypsum, diatomaceous earth and China clay. Water dispersible powders, granules and grains typically also include one or more wetting and dispersing agents, such as surfactants.

The composition of this invention may comprise 0.5 wt. % to 50 wt. %, preferably 2 wt. % to 30 wt. % by weight of the pesticide; 1 wt. % to 50 wt. %, preferably 2 wt. % to 40 wt. % of solid carrier and/or substrate; and 10 wt. % to 30 wt. %. other ingredients.

The compounds useful in the present invention may be readily synthesized using techniques generally known to synthetic organic chemists. The compositions may be prepared in known manner, for example by homogeneously mixing or grinding the active ingredients with other ingredients. Additional components may be admixed with the composition at any point during the process, including during and/or after any mixing step of the herbicide components.

The present invention provides a method of purifying a pesticide. The process demonstrates the purification of a TGAI pesticide, methyl N-(2-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl}phenyl)N-methoxy carbamate, which is melted in a melt tank. The melt tank is heated to at least 70°C, preferably to between about 85°C and about 90°C. This heating may occur by any suitable method, including jacketing a mixer and using hot water as the jacket heat transfer liquid. Preferably, the melt tank includes a mixing device to more evenly distribute the heat.

Separately, in a blender, ten parts of precipitated silica are charged, along with four parts of a liginin sulfonate. Preferably, the blender is a batch ribbon, paddle, plow, or the like, to allow for mixing. In one embodiment, the blender is equipped with a high shear impact chopper assembly, such as an intensifying bar. This assembly allows the batch to achieve as high a batch temperature as possible in as short a time as possible.

The blender may be pre-heated to a temperature close to the melt tank temperature.

The molten pesticide in the melt tank is added to the blender by manual means, such as pouring, or by pipe, hose, spray nozzel and/or pump connection. Preferably, the pesticide is added at an even rate. Moreover, the piping, hosing, spray nozzel, and/or pump is preferably heated to maintain flowablility.

In one embodiment, the blender is jacketed. The time to reach temperature is a function of temperature of the jacket, mixing rate, volume of materials, and starting temperature of materials. As such, these parameters are adjustable to meet the needs of the batch processing. In one embodiment, the mixing rate, as mesured by tip speed, is at least 10 m/s, preferably at least 30 m/s.

The blender may have airflow or vacuum applied to remove volatile impurities. Any suitable pressure may be used.

The blending time is also adjustable based on the uniformity of the mix, the temperature of the mix, and the type of blender. It is desirable to exceed a batch temperature of 84°C, the azeotropic separation temperature for toluene-water. Typically, about 30 minutes of mixing time is employed.

The pesticide coats the substrate in the blender to form a pesticide particle. The pesticide particles are then transported to a second blender. Other ingredients may also be added to the blender. Preferably, the blender is chilled to cool and initiate crystal growth, such as to not more than 30°C, preferably to not more than 25°C. As such, the second blender may be jacketed and contain a mixing element, as with the first blender. The time to crystallize is dependent upon several factors including temperature and amount of solvent impurity.

The pesticide particles are then collected or transported to an impact device. Any suitable impact device may be used, including air mills, jet mills, and the like. The pesticide particles may be subjected to multiple passes through the impact device, which reduces the particle size and may also reduce the amount of impurity in the pesticide. Typically, particle sizes are reduced to not more than 10µm.

After particle size reduction in the impact device, the particles are collected for use in making the appropriate pesticide formulations.

Experimental:

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, and methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, percent is percent by weight given the component and the total weight of the composition, temperature is in °C or is at ambient temperature, and pressure is at or near atmospheric.

Example 1: Impurity Effects on Crystallization

Batch 1A and 1B were melted at about 80°C and allowed to crystallize for 1 week at temperatures of 25°C and 50°C, at which time a sample of the pesticide was placed on a microscope slide and covered with a glass plate. The slide was placed in storage and observed at 24 hours and 168 hours. The visual observations are noted in Table 1 after observation with a microscope under 400x magnification using polarized light and a wave plate. Photographs of these samples were taken.

  • Batch 1A: methyl N-(2-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl)oxymethyl}phenyl)N-methoxy carbamate 92.99%; toluene 0.094%
  • Batch 1B: methyl N-(2-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl}phenyl)N-methoxy carbamate 96.90%; toluene 0.510%
Table 1: Visual Observations of Crystal Formation Batch Storage Temperature (°C) Observation Time (hr) Observation 1A, 1B N/A 0 crystals not present 1A 25 24 crystals not present 1A 25 168 crystals present 1A 50 24 crystals present 1A 50 168 crystals present 1B 25 24 crystals not present 1B 25 168 crystals not present 1B 50 24 crystals not present 1B 50 168 crystals not present

Batch 1 A and 1 B were observed for crystal formation at various storage temperatures. The crystal growth percent was measured by determining the melt energy for the sample and multiplying by 100% and dividing by 61.13 j/g (the amout of heat that must be added to melt the fully crystallized product). The results are shown in Table 2. Table 2: Crystal Growth Rate Days Crystal Growth Rate (%) Batch 1A Batch 1 B 40°C 25°C 5°C 40°C 25°C 5°C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 na na 1.58 0.00 0.00 0.00 1.00 0.67 1.09 2.65 0.00 0.00 0.00 2.00 0.01 1.75 3.30 0.00 0.00 0.78 3.00 0.01 5.65 9.31 1.16 0.00 1.63

Example 2: Effect of Milling on Impurities

Batch 2A, 2B and 2C, which were produced from Batch 1B, were subjected to the process of the present invention. A jet mill was used after the product was crystallized as indicated in Table 3. Table 3: Effect of Milling on Impurities Batch Toluene (%) Process Conditions Particle Size (µm) 2A 0.013 Azeotrope heated above 84°C but below 90°C; Not milled after crystallization 31.8 2B 0.002 Azeotrope heated above 84°C but below 90°C; Milled after crystallization with 1 pass at 75 lb/hr 11.9 2C 0.002 Azeotrope heated above 84°C but below 90°C; Milled after crystallization with 2 passes at 50 lb/hr 7.7

Example 3: Effect of Impurities on Crystallization

Batch 3A and 3B were produced from Batch 1B, and Batch 3C was produced from Batch 1A. All three batches were subjected to the process of the present invention. The time to crystallize was measured as indicated in Table 4. Table 4: Effect of Impurities on Crystallization Batch Toluene Content Time Exceeding 84°C Time to Crystallize (optical) 3A 0.013% 25 minutes < 3 hours 3B 0.016% 28 minutes < 3 hours 3C 0.020% 0 minutes ∼ 2 weeks

Example 4: Effect of Impurities on Physical State and Milling

Batch 4A produced from Batch 1B and Batch 4B produced from Batch 1A, were subjected to the process of the present invention. The time to crystallize and particle size were measured as indicated in Table 5. Table 5: Effect of Impurities on Physical State and Milling Batch Toluene Content Observed Sample History Time Exceeding 84°C Time to Crystallize (optical) Particle Size (um) 4A 0.002% Airmilled after crystalline 28 minutes < 3 hours 8.0 4B 0.020% Airmilled while not crystalline 0 minutes ∼ 2 weeks 21.4

Example 5: Effect of Impurities on Physical State and Milling Process

Batch 5A and 5B were produced from Batch 1B, and Batch 5C was produced from Batch 1A. All three batches were subjected to the process of the present invention, with varying milling processes. The time to crystallize and particle size were measured as indicated in Table 6. Table 6: Effect of Impurities on Physical State and Milling Process Batch Toluene Content Observed Sample History Time Exceeding 84°C Time to Crystallize (optical) Particle Size (um) 5A 0.016% Not airmilled, 28 minutes < 3 hours 20.6 5B 0.002% 5A airmilled afte crystalline as above as above 8.0 5C 0.020% Airmilled while not crystalline 0 minutes ∼ 2 weeks 21.4

Example 6: Effect of Impurities on Milling

Batch 6B, and 6C were produced from Batch 1B. Batch 6A was produced from Batch 1A. The batches were subjected to the process of the present invention. The particle sizes were measured as indicated in Table 7. Table 7: Effect of Impurities on Milling Process Conditions Batch 6A 6B 6C Time Batch Temperature Exceeded 84°C 0 minutes 28 minutes 25 minutes Toluene Content Product (%) 0.020% 0.016% 0.013% Batch aging time prior to airmilling ∼14 days same day 6 days Physical state at time of airmilling not crystalline mostly crystalline completely crystalline First pass airmilling Volume Weight Mean VMD (PSS) na 8.0 µm 7.7 µm D50 (Malvern) na 8.9 µm 8.1 µm Second Pass air-milling Volume Weight Mean VMD (PSS) 18.8 µm 7.1 µm 5.9 µm D50 (Malvern) 13.9 µm 7.7 µm 4.3 µm

Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application for all purposes.

It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope


Anspruch[de]
Verfahren zur Reinigung eines Pestizids, wobei man a) ein Pestizid schmilzt, wobei das Pestizid wenigstens einen Wirkstoff und wenigstens eine Verunreinigung, die die Kristallisation zu hemmen vermag, enthält; b) das Pestizid auf einem Trägermaterial unter Bildung von Pestizidpartikeln aufzieht; c) die Menge an Kristallisation hemmender Verunreinigung durch ein Azeotrop-Verfahren weitgehend verringert; und d) das Pestizid kristallisiert. Verfahren nach Anspruch 1, wobei der Wirkstoff eine Verbindung der Formel (I) ist: worin -- für eine Einfach- oder Doppelbindung steht und die Indizes und die Substituenten die folgenden Bedeutungen aufweisen: n steht für 0, 1, 2, 3 oder 4, wobei die Substituenten R1 verschieden sein können, wenn n größer 1 ist; m steht für 0, 1 oder 2, wobei die Substituenten R2 verschieden sein können, wenn m größer 1 ist; X steht für eine direkte Bindung, O oder NRa; Ra steht für Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl; R1 steht für Nitro, Cyano, Halogen, unsubstituiertes oder substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkinyloxy oder falls n für 2 steht, zusätzlich für eine unsubstituierte oder substituierte verbückende Gruppe, die an zwei benachbarte Ringatome gebunden ist und drei oder vier, unter 3 oder 4 Kohlenstoffatomen, 1 bis 3 Kohlenstoffatomen und 1 oder 2 Stickstoff-, Sauerstoff- und/oder Schwefelatomen ausgewählte Glieder enthält, wobei diese verbrückende Gruppe zusammen mit dem Ring, an den sie gebunden ist, einen teilweise ungesättigten oder aromatischen Rest zu bilden vermag; R2 steht für Nitro, Cyano, Halogen, Alkyl, Halogenalkyl, Alkoxy, Alkylthio oder Alkoxycarbonyl; R3 steht für unsubstituiertes oder substituiertes Alkyl, Alkenyl, Alkinyl; einen unsubstituierten oder substituierten, gesättigten oder einfach oder zweifach ungesättigten Ring, der neben Kohlenstoffatomen ein bis drei der folgenden Heteroatome als Ringglieder enthalten kann: Sauerstoff, Schwefel und Stickstoff, oder einen unsubstituierten oder substituierten, ein- oder zweikernigen aromatischen Rest, der neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein Sauerstoff- oder Schwefelatom als Ringglieder enthalten kann; R4 steht für Wasserstoff, unsubstituiertes oder substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkylcarbonyl oder Alkoxycarbonyl; und R5 steht für Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl, oder wenn X für NRa steht, zusätzlich für Wasserstoff; oder das Salz oder der Ester davon. Verfahren nach Anspruch 2, worin in Formel (I) n für 0 oder 1 steht; m für 0 oder 1 steht; X für O steht; R1 für unsubstituiertes oder substituiertes C1-C4-Alkyl, C2-C4-Alkenyl oder C1-C4-Alkoxy steht; R2 für C1-C4-Alkyl, C1-C4-Halogenalkyl oder C1-C4-Alkoxy steht; R3 für unsubstituiertes oder substituiertes Phenyl steht; R4 für Wasserstoff, unsubstituiertes oder substituiertes C1-C4-Alkyl, C2-C4-Alkenyl oder C1-C4-Alkylcarbonyl steht; und R5 für C1-C4-Alkyl oder C2-C4-Alkenyl steht. Verfahren nach Anspruch 1, worin der Wirkstoff Methyl-N-(2-{[1-(4-chlorphenyl)-1 H-pyrazol-3-yl]oxymethyl}phenyl)-N-methoxycarbamat ist. Verfahren nach Anspruch 1, wobei das Verfahren außerdem das Mischen des Pestizids mit einem Lösungsmittel vor dem Aufziehen des Pestizids auf dem Trägermaterial umfasst. Verfahren nach Anspruch 5, wobei das Lösungsmittel Wasser ist. Verfahren nach Anspruch 1, wobei sich der Wirkstoff bei Temperaturen im Bereich von 50 °C des Siedepunkts der Verunreinigung unter normalen Bedingungen chemisch zersetzt. Verfahren nach Anspruch 1, wobei man das Azeotrop-Verfahren durch Vakuumdestillation, Wärme oder Verdampfen bei niedrigem Druck bewerkstelligt. Verfahren nach Anspruch 1, wobei das Trägermaterial Ligninsulfonat, synthetische Silikate, Siliziumdioxid, Harnstoff, Lactose, Ammoniumsulfat, Saccharose, Natriumchlorid, Natriumsulfat, Ton, Kieselgur, Kaolin, Talk, Calciumcarbonat, A-tapulgit, wasserlösliches Polymer oder Mischungen davon ist. Verfahren nach Anspruch 9, wobei das Trägermaterial Ligninsulfonat, Siliziumdioxid oder eine Mischung davon ist. Verfahren nach Anspruch 1, wobei man außerdem die kristallisierten Pestizidpartikel mechanisch zerkleinert. Verfahren nach Anspruch 1, wobei das kristallisierte Pestizid eine Partikelgröße von nicht mehr als 10 µm aufweist. Verfahren nach Anspruch 1, wobei das kristallisierte Pestizid weniger als 0,1 Gew.-% an die Kristallisation hemmender Verunreinigung enthält. Verfahren nach Anspruch 1, wobei das Pestizid einen Schmelzpunkt von höchstens etwa 90 °C aufweist.
Anspruch[en]
A method of purifying a pesticide comprising: a) melting a pesticide, wherein the pesticide comprises at least one active ingredient and at least one impurity capable of inhibiting crystallization; b) coating the pesticide on a substrate to form a pesticide particle; c) substantially reducing the amount of crystallization inhibiting impurity by an azeotropic method; and d) crystallizing the pesticide. The method of claim 1, wherein the active ingredient is a compound of formula (I): wherein - is a single or double bond and the indices and the substituents have the following meanings: n is 0, 1, 2, 3 or 4, it being possible for the substituents R1 to be different if n is greater than 1; m is 0, 1 or 2, it being possible for the substituents R2 to be different if m is greater than 1; X is a direct bond, O or NRa ; Ra is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl or cycloalkenyl; R1 is nitro, cyano, halogen, unsubstituted or substituted alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy or in the case where n is 2, additionally is an unsubstituted or substituted bridge bonded to two adjacent ring atoms and containing three to four members from the group consisting of 3 or 4 carbon atoms, 1 to 3 carbon atoms and 1 or 2 nitrogen, oxygen and/or sulfur atoms, this bridge together with the ring to which it is bonded being able to form a partly unsaturated or aromatic radical; R2 is nitro, cyano, halogen, alkyl, haloalkyl, alkoxy, alkylthio or alkoxycarbonyl; R3 is unsubstituted or substituted alkyl, alkenyl or alkynyl; an unsubstituted or substituted, saturated or mono- or diunsaturated ring which, in addition to carbon atoms, can contain one to three of the following heteroatoms as ring members: oxygen, sulfur and nitrogen, or an unsubstituted or substituted, mono- or binuclear aromatic radical which, in addition to carbon atoms, can contain one to four nitrogen atoms or one or two nitrogen atoms and one oxygen or sulfur atom or one oxygen or sulfur atom as ring members; R4 is hydrogen, unsubstituted or substituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkylcarbonyl or alkoxycarbonyl; and R5 is alkyl, alkenyl, alkynyl, cycloalkyl or cycloalkenyl, or in the case where X is NRa, additionally is hydrogen; or the salt or ester thereof. The method of claim 2, wherein formula (I): n n is 0 or 1; m is 0 or 1; X is O; R1 is unsubstituted or substituted C1 -C4 alkyl, C2 -C4 alkenyl, or C1 -C4 alkoxy; R2 is C1 -C4 alkyl, C1 -C4 haloalkyl, or C1 -C4 alkoxy; R3 is an unsubstituted or substituted benzene; R4 is hydrogen, unsubstituted or substituted C1 -C4 alkyl, C2 -C4 alkenyl, or C1 -C4 alkylcarbonyl; and R5 is C1 -C4 alkyl or C2 -C4 alkenyl. The method of claim 1, wherein the active ingredient is methyl N-(2-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl}phenyl)N-methoxy carbamate. The method of claim 1, wherein the method further comprises mixing the pesticide with a solvent before coating the pesticide on the substrate. The method of claim 5, wherein the solvent is water. The method of claim 1, wherein the active ingredient chemically decomposes at temperatures within 50°C of the normal boiling point of the impurity. The method of claim 1, wherein the azeotropic method is accomplished by vacuum distillation, heat, or low pressure evaporation. The method of claim 1, wherein the substrate is lignin sulfonate, synthetic silicates, silica, urea, lactose, ammonium sulfate, sucrose, sodium chloride, sodium sulfate, clay, diatomite, terra alba, talc, calcium carbonate, attapulgite, water soluble polymer, or combinations thereof. The method of claim 9, wherein the substrate is lignin sulfonate, silica, or a combination thereof. The method of claim 1, further comprising reducing the size of the crystallized pesticide particle by an impact method. The method of claim 1, wherein the crystallized pesticide has a particle size of not more than 10 µm. The method of claim 1, wherein the crystallized pesticide comprises less than 0.1 wt. % of an impurity that inhibits crystallization. The method of claim 1, wherein the pesticide has a melting point of not more than about 90°C.
Anspruch[fr]
Procédé de purification d'un pesticide, comportant les étapes consistant à : a) faire fondre un pesticide, le pesticide comportant au moins un ingrédient actif et au moins une impureté capable d'empêcher une cristallisation ; b) appliquer le pesticide en revêtement sur un substrat pour former des particules de pesticide ; c) réduire sensiblement la quantité d'impureté inhibitrice de cristallisation par un procédé azéotrope ; et d) cristalliser le pesticide. Procédé selon la revendication 1, dans lequel l'ingrédient actif est un composé de la formule (I) : dans laquelle -- est une liaison simple ou double, et les indices et les substituants ont les significations suivantes : n est 0, 1, 2, 3 ou 4, les substituants R1 pouvant être différents si n est supérieur à 1 ; m est 0, 1 ou 2, les substituants R2 pouvant être différents si m est supérieur à 1 ; X est une liaison directe, O ou NRa ; Ra est un groupe hydrogène, alkyle, alcényle, alcynyle, cycloalkyle ou cycloalcényle ; R1 est un groupe nitro, cyano, halogène, alkyle substitué ou non substitué, alcényle, alcynyle, alcoxy, alcényloxy, alcynyloxy ou, dans le cas dans lequel n est 2, est de plus un pont non substitué ou substitué lié à deux atomes de noyau adjacents, et contenant trois à quatre éléments du groupe consistant en 3 ou 4 atomes de carbone, 1 à 3 atomes de carbone et 1 ou 2 atomes d'azote, d'oxygène et/ou de soufre, ce pont, avec le noyau auquel il est lié, pouvant former un radical partiellement insaturé ou aromatique ; R2 est un groupe nitro, cyano, halogène, alkyle, halogénoalkyle, alcoxy, alkylthio ou alcoxycarbonyle ; R3 est un groupe alkyle non substitué ou substitué, alcényle ou alcynyle ; un noyau non substitué ou substitué, saturé ou monoinsaturé ou di-insaturé qui, en plus des atomes de carbone, peut contenir un à trois des hétéroatomes suivants en tant qu'éléments de noyau : de l'oxygène, du soufre et de l'azote, ou un radical aromatique non substitué ou substitué, mononucléaire ou binucléaire qui, en plus des atomes de carbone, peut comporter un à quatre atomes d'azote, ou un ou deux atomes d'azote et un atome d'oxygène ou de soufre, ou un atome d'oxygène ou de soufre, comme éléments de noyau ; R4 est un groupe hydrogène, alkyle non substitué ou substitué, alcényle, alcynyle, cycloalkyle, cycloalcényle, alkylcarbonyle ou alcoxycarbonyle ; et R5 est un groupe alkyle, alcényle, alcynyle, cycloalkyle ou cycloalcényle, ou dans le cas dans lequel X est NRa, est de plus un groupe hydrogène ; ou le sel ou l'ester de ceux-ci. Procédé selon la revendication 2, dans lequel, dans la formule (I) : n est 0 ou 1 ; m est 0 ou 1 ; X est O ; R1 est un groupe alkyle en C1-C4 non substitué ou substitué, alcényle en C2-C4 ou alcoxy en C1-C4 ; R2 est un groupe alkyle en C1-C4, halogénoalkyle en C1-C4, ou alcoxy en C1-C4 ; R3 est un benzène non substitué ou substitué ; R4 est un groupe hydrogène, alkyle en C1-C4 non substitué ou substitué, alcényle en C2-C4, ou alkylcarbonyle en C1-C4 ; et R5 est un groupe alkyle en C1-C4 ou alcényle en C2-C4. Procédé selon la revendication 1, dans lequel l'ingrédient actif est du méthyl N-{2-[1-(4-chlorophényl)-1H-pyrazol-3-yloxyméthyl]phényl}(N-méthoxy) carbamate. Procédé selon la revendication 1, dans lequel le procédé comporte en outre le mélange du pesticide avec un solvant avant l'application du pesticide en revêtement sur le substrat. Procédé selon la revendication 5, dans lequel le solvant est de l'eau. Procédé selon la revendication 1, dans lequel l'ingrédient actif se décompose chimiquement à des températures éloignées de moins de 50°C du point d'ébullition normal de l'impureté. Procédé selon la revendication 1, dans lequel le procédé azéotrope est accompli par distillation sous vide, chaleur, ou évaporation basse pression. Procédé selon la revendication 1, dans lequel le substrat est du sulfonate de lignine, des silicates synthétiques, de la silice, de l'urée, du lactose, du sulfate d'ammonium, du saccharose, du chlorure de sodium, du sulfate de sodium, de l'argile, de la diatomite, du kaolin, du talc, du carbonate de calcium, de l'attapulgite, un polymère hydrosoluble, ou des combinaisons de ceux-ci. Procédé selon la revendication 9, dans lequel le substrat est du sulfonate de lignine, de la silice, ou une combinaison de ceux-ci. Procédé selon la revendication 1, comportant en outre la réduction de la taille de la particule de pesticide cristallisée par un procédé à impact. Procédé selon la revendication 1, dans lequel le pesticide cristallisé a une dimension de particule inférieure ou égale à 10 µm. Procédé selon la revendication 1, dans lequel le pesticide cristallisé comporte moins de 0,1 % en poids d'une impureté qui empêche une cristallisation. Procédé selon la revendication 1, dans lequel le pesticide a un point de fusion inférieur ou égal à environ 90°C.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com