PatentDe  


Dokumentenidentifikation EP1448936 03.01.2008
EP-Veröffentlichungsnummer 0001448936
Titel STRAHLUNGS-HITZESCHILD FÜR SOLARSYSTEM
Anmelder Solel Solar System Ltd., Jerusalem/Jerusalajim, IL
Erfinder SCHWARTZMAN, Joel, Shoham 73142, IL;
KLAPWALD, Shmuel, 95903 Jerusalem, IL;
BARKAI, Menashe, 69440 Tel Aviv, IL;
MANDELBERG, Eli, 64284 Tel Aviv, IL;
BRENMILLER, Avi, 69127 Tel Aviv, IL
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60223711
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 13.11.2002
EP-Aktenzeichen 027858877
WO-Anmeldetag 13.11.2002
PCT-Aktenzeichen PCT/IL02/00905
WO-Veröffentlichungsnummer 2003042609
WO-Veröffentlichungsdatum 22.05.2003
EP-Offenlegungsdatum 25.08.2004
EP date of grant 21.11.2007
Veröffentlichungstag im Patentblatt 03.01.2008
IPC-Hauptklasse F24J 2/05(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse F24J 2/46(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
FIELD OF THE INVENTION

The present invention is generally in the field of solar energy collecting systems of the so-called focused collector type. More particularly, the invention is concerned with a radiation heat-shield for such collectors.

BACKGROUND OF THE INVENTION

Rapid exploitation of natural energy resources together with the search for environmental friendly energy resources and the need to provide energy to remote communities or plants raise an increase interest in solar energy systems and in improvements thereto. However, owing to considerations of economics and efficiency, commercial solar energy is still limited in use. Nevertheless, continuous research increases efficiency of such solar systems which gradually become more cost effective and render them more favorable.

Various types of solar collecting systems are known for converting solar energy into other forms of useful energy, by collecting the solar energy and transforming it into heat energy. The heat energy may then be consumed in various forms.

US 4,186,725 discloses a solar energy collector comprising a metal tube through which solar-heated fluids may pass. The metal tube is maintained in a high vacuum environment, in the order of 106 torr, by a coaxial transparent glass tube and a pair of metal bellows sealing the ends of the glass tube to the metal tube in flexible seals designed to accommodate relative radial and linear expansion of the glass. The metal tube may be coated with a suitable absorption layer and the assembly of the metal and glass tubes may form a part of a solar system, such as, for example, a non-imaging concentrator in which the tubes are positioned longitudinally of and within an elongated parabolic reflector.

US 4,273,104 discloses a focusing solar energy collector that has a main reflector made up of a central support rib and a plurality of lateral support ribs extending from the main support to form a series of cross shaped supports for a thin reflective sheet held on the supports by a double faced tape. The central support rib connects with end supports for an evacuated cylindrical glass tube that contains a receiver and a secondary mirror. The secondary mirror is formed from an extrusion and comprises an elongated curved reflective surface having its edges touching the glass cylinder, and an elongated rib also touching the glass to give three point support. A flexible seal is provided between the receiver and the end plates for the glass cylinder to accommodate differential expansion.

One particular type of solar systems is the so-called "focused collector type" wherein a heat collector element (HCE) is received at the focus of a reflecting member which in order to improve the angular radiation efficiency of the solar system, tracking means are provided for tracking the sun as it progresses in the sky. The HCE comprises a spatter coated tube with a liquid flowing therethrough, and in order to still improve the efficiency of the solar system, the coated tube is received within a coaxial translucent protective tube (typically made of durable glass) with a vacuum formed therein. Such systems are often referred to as ultimate vacuum collectors (UVAC).

The glass protective tube, protects the coated tube which is made of metal, coated with a layer of material having a high radiation absorbing coefficient and minimizes heat loss from the coated tube. A solar heat collector system is typically tens of meters long and occupies a large field. For practical reasons the solar system is constructed of aligned coated tube elements connected to one another so as to form a continuous line, whilst segments of the protective glass tubes extending over a major portion the coated tube elements, though they are not continuous.

The coated tubes and the protective tubes have different heat expansion coefficient, and accordingly the protective tubes are not continuous, since temperature changes would result in non-uniform expansion of the coated tubes and their respective protective tubes, resulting in severe damage to the system. Thus, it becomes necessary to sealingly couple the protective tubes over the coated tube utilizing a suitable device which provides some degree of freedom, in particular in an axial direction, so as to allow for different expansion of the glass tube over the metal coated tube, whilst retaining the vacuum within the protective tube.

Such an element is a bellows-type connector element having one axial end thereof sealingly secured over the coated tube and its opposed end co-axially connected to the protective tube by a so-called glass to metal connection, wherein the thickness of the respective end of the bellows is significantly reduced and has a diameter corresponding with that of the glass tube. By melting the end of the glass tube, the reduced thickness metal portion may be introduced into an edge of the molten glass tube whereby, its edges becomes overlapped by glass and in fact becomes sealingly welded thereto.

However, the zone of the glass to metal connection remains vulnerable and temperature changes may cause different expansion of the metal versus the glass components, resulting in loss of vacuum or even in rupturing of the envelope glass protective tube.

The problem of different expansion coefficient of glass and metal components may occurs in particular by concentrated or reflected radiation, which instead of being reflected towards the coated tube of the heat collecting element, are reflected to the glass to metal connection zone. A particular problem occurs when the sun is at low angles, where radiation is reflected towards one of the glass to metal connection zones of the HCE. For example, since it is most efficient to place the solar system such that a longitudinal axis of the HCE is positioned parallel with the meridian, i.e. extending in a north-south orientation, the problem of rays striking against the glass to metal connection zone occurs in the northern hemisphere mainly at the northern ends of each protective tube.

It is an object of the present invention to provide a radiation shield to protect the glass to metal connection zone from sunrays, direct or reflected, so as to prevent non-uniform expansion of glass and metal components at the connection zone.

SUMMARY OF THE INVENTION

According to the present invention there is provided a solar system with the features of claim 1 and a radiation shield assembly with the features of claim 19.

According to one embodiment of the invention, the shield assembly comprises an external unitary shield member extending over the deformation zone and the GMC zone. According to a different embodiment, the radiation shield assembly comprises a first external shield member extending from the proximal convolution towards the distal end of the connector element, and a second external shield member extending from the proximal convolution towards a corresponding end of the glass tube. Accordingly, the first shield member shields the connector element and the second shield member shields the GMC zone.

One particular feature of the invention is to provide a radiation shield assembly comprising a first shield member extending over the connector element (deformation zone), and a second shield member extending over the transition zone and the GMC zone.

According to another aspect, the invention provides also an internal shield member extending between the HCE and the enveloping glass tube adjacent the GMC zone; said internal shield member intersecting the longitudinal axis. The internal shield member is in particular useful for shielding the glass to metal connection zone from rays reflected when the sun is at low angles.

The external shield members are formed, according to an embodiment of the invention, with a plurality of support legs, radially projecting inwardly. Said support legs, according to some embodiments of the invention, are integral with the external shield members. However, for the internal shield member, said support legs may be non integral with the shield ring and may be attached thereto in a manner imparting them radial biasing effect.

For best results, at least external surfaces of the shield assembly members are reflective, e.g. by means of a solar reflective coating agent, by suitable finishing (polishing) of high reflective solar metals, etc.

The invention is also concerned, by another of its aspects, with the construction of shield members and their manufacturing.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in practice, some embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:

  • Fig. 1A is a schematic representation of a focused collector type solar system;
  • Fig. 1B is a sectioned view of a glass to metal connection of a solar unit in accordance with prior art;
  • Fig. 2A is an enlargement of the northern end of a collector marked II in Fig. 1A, illustrating out of focus sunrays reflected from the collector's reflector towards the glass to metal connection;
  • Fig. 2B is a side view of Fig. 2A illustrating sunrays reflected out of focus towards the glass to metal connection;
  • Fig. 3A is a perspective view of conjoining ends of heat collecting elements fitted with radiation shields in accordance with an embodiment of the present invention;
  • Fig. 3B is a longitudinal section through Fig. 3A;
  • Fig. 4 is a partially sectioned view of the portion marked IV in Fig. 3B, illustrating an embodiment of a radiation shield in accordance with the present invention;
  • Fig. 5A is an isometric view of an external shield member in accordance with an embodiment of the present invention;
  • Fig. 5B is a side view of the shield member seen in Fig. 5A;
  • Fig. 5C is a spreading of the shield member of Figs. 5A and 5B;
  • Fig. 6 is a partially sectioned view of another embodiment shielding a glass to metal zone in accordance with the present invention;
  • Fig. 7A is an isometric view of an external shield member used in accordance with the embodiment of Fig. 7;
  • Fig. 7B is a side view of the shield member of Fig. 7A;
  • Fig. 7C is a spreading of the shield member of Fig. 7A;
  • Fig. 8A is an isometric view of an assembly of an internal radiation shield member, in accordance with the present invention;
  • Fig. 8B is an exploded isometric view of the shield member of Fig. 8A; and
  • Fig. 8C is a side elevation of the shield member of Fig. 8A, illustrating by dashed lines the deformed position of the support legs of the shield member.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Attention is first directed to Fig. 1A of the drawings illustrating a solar connecting system generally designated 10. Such a solar system may be part of a solar field which may hold as many as hundreds of meters of collector units as in Fig. 1. The collector system comprises a plurality of coaxially aligned collector units 12, each comprising a heat collector element (HCE) fixed at the focus of a solar reflector 18, which in the present example is a trough-like reflector. Each solar unit 12 is mounted on support legs 20 with a tracking mechanism provided (not shown) for tracking the sun as it travels through the sky.

The heat collecting element (HCE) comprises a spatter coated tube 16 (coated with a radiation absorbing layer), the arrangement being such that where heat collecting elements of adjoining units 12 are coupled with one another, e.g. by welding with a heat collecting fluid flowing therethrough,

In order to increase the thermal efficiency of the solar system and to protect the coated tubes, each tube 16 is coaxially received within a vacuumed protective glass tube 24. In order to keep the space 26 (Figs. 1B, 3A, 3B) under vacuum, a suitable arrangement is provided for sealingly supporting the protective tube 24 over the coated tube 16, this being by means of a bellow-type connecting element generally designated 30, as seen in Figure 1B. Connecting element 30 comprises a plurality of convolutions 32 with a most distal end 36 sealingly bearing against a retention ring 38 sealingly fixed over the coated tube 16 by welding at 40. Accordingly, the distal end of the connecting element is axially fixed over the coated tube 16. Extending from a proximal convolution 42 of the connecting element there is a cylindric portion 46, coaxially extending with tube 16 and having a gradually reduced thickness. This section is referred to as a glass to metal connection zone. An end 48 of the tubular section 46 is significantly thin and has a diameter corresponding with a narrow portion 50 of the protective tube 24, whereby melting the end of the glass tube enables connection with the end 48 of the metal component, in a so-called glass to metal connection.

The connecting element 30 and the protective tube 24 have different expansion coefficients, whereby the connecting element 30 expands more than the glass protective tube 24. This expansion is axially absorbed by the convolutions of the connecting element 30. However, under extreme thermal conditions, the connecting element may fail to handle the expansion of the glass tube and of the connecting element which may result in severe damage to the collecting unit. This may occur in particular upon sunrays 56 concentrated or reflected ,represented by line 58 in Figures 2A and 2B, reflected by the reflector 18.

Overcoming the problem disclosed above is by providing a radiation shield assembly designated 60 in Figures 3A and 3B and in larger scale in Figure 4.

The radiation assembly 60 comprises a first external shield member 62, a second external shield member 64 and an internal radiation shield member 68, provided only at the northern end of a collecting unit, namely at the right-hand connection in Figures 3A and 3B designated N and as can be seen also in Figure 4. The internal shield member 68 is useful in particular when the sun is in a low position with rays being reflected at an oblique angle. This occurs for example at a northern end of the collector unit (mounted in a north-south orientation, in the northern hemisphere) and thus particular means are provided to block such radiation.

The first and second external radiation shields 62 and 64, respectively, are coaxial with the longitudinal axis of the coated tube 16 and the arrangement is such that the first shield member 62 shields the convolution section of the connecting element 30 and the second shield member 64 shields the glass to metal connection zone 46. The external shield members 62 and 64.

Preferably, the external surfaces (facing radiation) of the shield members are highly reflective, either by suitable finishing e.g. polishing of highly reflective metal or by coating, e.g. silver coating, so as to increase reflectivity and decrease heating of the shield members.

As best seen in Fig. 4, the external shield members 62 and 64 coaxially extend over the connecting element 30 and the glass to metal connection zone 46. The arrangement is such that both shield members have a plurality of support legs 70 and 72, respectively, radially extending and adapted for engagement with the most proximal convolution 74 of the connecting element 30. The arrangement is such that axial deformation of the connecting element 30 entails corresponding axial displacement of the shield members so as to minimize the exposure of the connector element and the glass to metal connection zone to concentrated or reflected radiation, as well as to protect the connecting element 30 from environmental deterioration (increased oxidation, etc.).

The glass to metal connection zone is further protected by the internal radiation shield 68 which makes it possible to shorten the length of the second external shield member 64, thus avoiding interfering with the effective length of the protective glass tube 24 and the coated tube 16. Accordingly, the proximal end 76 of the second external shield member 64 and the radial portion 78 of the internal shield member axially co-extend.

Further attention is now directed to Figs. 5A-5C illustrating one particular embodiment of the external shield members. In fact, the same configuration is suitable for both the first and second external shield members, the only difference residing in the length and diameter thereof.

Such a shield member generally designated 90 is formed out of a flat strap of material 92 (Fig. 5C) formed with a plurality of projections 94 eventually constituting support legs 96 (Figs. 5A and 5B) which are folded so as to radially extend inwardly. These support legs correspond with support legs 70 and 72 in Fig. 4.

The width W of the band 92 corresponds with the length of the respective first or second external shield member 64 and the height H of the projections 94 corresponds with the actual length of the support legs for bearing against the proximal convolution 74, as seen in Fig. 4.

The band 92 is further formed at a first end thereof with two slits 102 and an opposed end thereof is formed with two projections 104 whereby after bending projections 94 to extend normal to the surface of the bend 92 and then the shield member is formed so as to obtain its circular shape with the support legs engaging the proximal convolution, the shield member being fixed in its position by insertion of the projections 104 into slots 102 and bending the projections 104, similar to a bracing bend, as seen in Fig. 3A.

Another embodiment of an external shield member is illustrated in Fig. 6, wherein a uniform external shield member 110 is provided, the shield spanning the entire length of the connecting element 30 and the glass to metal connecting zone 46 with a plurality of radially extending support legs 114 for engagement with the proximal convolution 74 and supporting the shield member 110.

Figs. 7A-7C illustrate an embodiment of an external shield 110 as in Fig. 6, wherein the width W of the band 116 corresponds with the overall length of the connecting element 30 and glass to metal connection zone 46. In the particular embodiment illustrated in Figs. 7A-7C the support legs 114 are integrally formed out of the band constituting the shield member by cut-outs formed therein. However, it will be appreciated that such support legs may also be formed by other means, e.g. by point welding such radial projections as known per se.

Further attention is now directed to Figs. 8A-8C directed to the internal shield member 68. The internal shield member 68 is a ring-like element having an L-like cross-section with a first arm portion thereof 120 adapted for radially extending within the vacuumed space 26 (see Figs. 1B, 4 and 6) which portion has an external reflective surface 122, e.g. by means of polishing, coating with a reflective material etc. The second leg portion 124 extends coaxially with the longitudinal axis of the heat collecting element and serves for supporting the biasing support legs 128. The ring is formed with three apertures 130 adapted for accommodating a hook portion 134 of each support leg 128.

In the assembled position, support legs 128 bear against the external surface of arm portion 124 whilst hook portion 134 is received within aperture 130. In this position the support legs are biased radially outwardly as in Fig. 8C, though they may be deformed into the position illustrated by dashed lines in Fig. 8C for insertion and engagement with a proximal convolution of the connection element 30 as illustrated in Figs. 4 and 6, in a snapping manner.

As seen in these Figures, the internal shield member is intermediately received in the vacuum space 26 not being in contact with either the coated tube 16 or the protective tube 24 and it extends axially similar to the extent of the second external shield member 64.


Anspruch[de]
Solarsystem (10), aufweisend einen Reflektor (18) und ein Wärmesammelelement, HCE, das am Brennpunkt des Reflektors angeordnet ist, wobei das HCE eine Längsachse besitzt, die sich zwischen einem ersten Ende und einem zweiten Ende erstreckt; das HCE ein beschichtetes Rohr (16) aufweist, das in einem koaxialen evakuierten umhüllenden Glasrohr (24) aufgenommen ist; das umhüllende Glasrohr (24) an entsprechenden Enden davon am beschichteten Rohr (16) mittels eines koaxial verformbaren Verbindungselements (30) befestigt ist, welches ein distales Ende aufweist, das abdichtend am beschichteten Rohr (16) befestigt ist, und ein proximales Ende, das abdichtend an einem entsprechenden Ende des umhüllenden Glasrohrs (24) mittels einer Glas-zu-Metall-Verbindung, GMC, befestigt ist, dadurch gekennzeichnet, dass sich eine Strahlungsschildanordnung (60) über das Verbindungselement (30) und über die GMC erstreckt; wobei die Strahlungsschildanordnung (60) mittels Stützbeinen (70, 72), welche sich benachbart zum proximalen Ende im Eingriff mit dem Verbindungselement (30) befinden, am Verbindungselement (30) angebracht ist. Solarsystem (10) nach Anspruch 1, bei dem das verformbare Verbindungselement (30) ein balgartiges Element ist, das eine axiale Verformungszone aufweist, die mit mehreren Falten (32) und einer Übergangszone ausgebildet ist, die sich von einer proximalsten Falte (74) zur GMC-Zone erstreckt, wobei die Stützbeine (70, 72) in die proximalste Falte (74) des Verbindungselements (30) eingreifen. Solarsystem (10) nach Anspruch 2, bei dem die Strahlungsschildanordnung (60) ein externes einstückiges Schildelement aufweist, das sich über die Verformungszone und die GMC-Zone erstreckt. Solarsystem (10) nach Anspruch 2, bei dem die Strahlungsschildanordnung (60) ein erstes externes Schildelement (62) aufweist, das sich von der proximalen Falte (74) in Richtung des distalen Endes des Verbindungselements (30) erstreckt, und ein zweites externes Schildelement (64), das sich von der proximalen Falte (74) in Richtung eines entsprechenden Endes des Glasrohrs (24) erstreckt. Solarsystem (10) nach Anspruch 2, bei dem die Strahlungsschildanordnung (60) ein erstes Schildelement (62) aufweist, das sich über die Verformungszone erstreckt, und ein zweites Schildelement (64), das sich über die Übergangszone und die GMC-Zone erstreckt. Solarsystem (10) nach Anspruch 5, bei dem das erste Schildelement (62) und das zweite Schildelement (64) mittels der Stützbeine (70, 72), die in dieselbe Falte (32) eingreifen, am Verbindungselement (30) befestigt sind. Solarsystem (10) nach Anspruch 1, bei dem die Stützbeine (70, 72) radiale Segmente (78) sind, die integral mit dem Strahlungsschildelement (60) ausgebildet sind. Solarsystem nach Anspruch 4, bei dem sich das erste Schildelement (62) und das zweite Schildelement (64) parallel bezüglich der Längsachse des HCE erstrecken. Solarsystem (10) nach Anspruch 2, bei dem die Strahlungsschildanordnung (60) ein internes Strahlungsschildelement (68) aufweist, das sich zwischen dem beschichteten Rohr (16) und dem umhüllenden Glasrohr (24) benachbart zur GMC-Zone erstreckt; wobei das interne Schildelement (68) die Längsachse schneidet. Solarsystem (10) nach Anspruch 9, bei dem das interne Schildelement (68) Stützbeine (70, 72) aufweist, die in die proximalste Falte (74) des Verbindungselements (30) eingreifen. Solarsystem (10) nach Anspruch 10, bei dem das interne Schildelement (68) ein Ringelement mit einem L-ähnlichen Abschnitt ist, dessen erster Armteil (120) sich parallel zum beschichteten Rohr (16) erstreckt und dessen anderer Armteil (124) sich senkrecht dazu erstreckt. Solarsystem (10) nach Anspruch 9 in Kombination mit Anspruch 4, bei dem sich ein entferntes Ende des internen Schildelements (68) und ein entferntes Ende des zweiten externen Schildelements (64) axial überlappen. Solarsystem (10) nach Anspruch 11, bei dem das interne Schildelement (68) Stützbeine (128) aufweist, die gegen den ersten Armteil (120) drücken und radial nach außen vorgespannt sind, um so in die proximalste Falte (74) des Verbindungselements einzugreifen. Solarsystem (10) nach Anspruch 1, bei dem die Längsachse des HCE so positioniert ist, dass sie sich parallel zum Meridian erstreckt, wobei das erste Ende und das zweite Ende Nord bzw. Süd entsprechen. Solarsystem (10) nach Anspruch 14, bei dem beide Enden des HCE mit der Strahlungsschildanordnung (60) ausgerüstet sind. Solarsystem (10) nach Anspruch 15, bei dem zumindest die Strahlungsschildanordnung (60) am zweiten Ende des HCE mit einem internen Strahlungsschildelement (68) ausgerüstet ist, das sich zwischen dem beschichteten Rohr (16) und dem umhüllenden Glasrohr (24) benachbart zur GMC-Zone erstreckt; wobei das interne Strahlungsschildelement (68) die Längsachse schneidet. Solarsystem (10) nach Anspruch 1, bei dem zumindest eine externe Oberfläche der Schildanordnungselemente reflektierend ist. Solarsystem (10) nach Anspruch 4, bei dem zumindest eine externe Oberfläche des ersten externen Schildelements (62) und des zweiten externen Schildelements (64) aus einem reflektierenden Material besteht. Strahlungsschildanordnung (60) für ein Solarsystem (10) der Art, die einen Reflektor (18) mit einem Wärmesammelelement, HCE, aufweist, das am Brennpunkt des Reflektors eingebracht ist, wobei das HCE ein beschichtetes Rohr (16) mit einer Längsachse aufweist, die sich zwischen einem ersten Ende und einem zweiten Ende erstreckt; wobei das beschichtete Rohr in einem koaxialen evakuierten umhüllenden Glasrohr (24) aufgenommen ist; wobei das umhüllende Glasrohr (24) an entsprechenden Enden davon am beschichteten Rohr (16) mittels eines koaxial verformbaren Verbindungselements (30) befestigt ist, welches ein distales Ende davon aufweist, das abdichtend am beschichteten Rohr (30) befestigt ist, und ein proximales Ende davon, das abdichtend an einem entsprechenden Ende des umhüllenden Glasrohrs (24) mittels einer Glas-zu-Metall-Verbindung, GMC, befestigt ist; dadurch gekennzeichnet, dass sich eine Strahlungsschildanordnung (60) über das Verbindungselement (30) und über die GMC erstreckt; wobei die Strahlungsschildanordnung (60) mittels Stützbeinen (70, 72), welche sich benachbart zum proximale Ende im Eingriff mit dem Verbindungselement (30) befinden, am Verbindungselement (30) angebracht ist. Strahlungsschildanordnung (60) nach Anspruch 19, bei der die Stützbeine (70, 72) in eine proximalste Falte (74) des Verbindungselements eingreifen. Strahlungsschildanordnung (60) nach Anspruch 19, aufweisend ein einstückiges Schildelement, das sich über eine axiale Verformungszone des Verbindungselements und über die GMC-Zone erstreckt. Strahlungsschildanordnung (60) nach Anspruch 20, aufweisend ein erstes externes Schildelement (62), das sich von der proximalen Falte (74) in Richtung des distalen Endes des Verbindungselements (30) erstreckt, und ein zweites externes Schildelement (64), das sich von der proximalen Falte (74) in Richtung eines entsprechenden Endes des Glasrohrs (24) erstreckt. Strahlungsschildanordnung (60) nach Anspruch 20, aufweisend ein erstes externes Schildelement (62), das sich über eine Verformungszone des Verbindungselements (30) erstreckt, und ein zweites externes Schildelement (64), das sich über eine Übergangszone des Verbindungselements (30) und die GMC-Zone erstreckt. Strahlungsschildanordnung (60) nach Anspruch 22, bei der das erste externe Schildelement (62) und das zweite externe Schildelement (64) mittels Stützbeinen (70, 72), die in dieselbe Falte (32) eingreifen, am Verbindungselement (30) befestigt sind. Strahlungsschildanordnung (60) nach Anspruch 19, ferner aufweisend ein internes Strahlungsschildelement (68), das sich zwischen dem beschichteten Rohr (16) und dem umhüllenden Glasrohr (24) benachbart zur GMC-Zone erstreckt; wobei das interne Strahlungsschildelement (68) die Längsachse schneidet. Strahlungsschildanordnung (60) nach Anspruch 19, bei der das Schildelement ein Materialband ist, das in einer geschlossenen ringähnlichen Form ausgebildet ist und in dieser Position befestigt ist; wobei das Schildelement integral eine Mehrzahl von Stützbeinen aufweist, die sich radial nach innen erstrecken. Strahlungsschildanordnung (60) nach Anspruch 19, bei dem zumindest eine äußere Oberfläche der Schildelemente der Anordnung reflektierend ist. Strahlungsschildanordnung (60) nach Anspruch 25, bei der das interne Strahlungsschildelement (68) Stützbeine (70, 72) aufweist, die in die proximalste Falte (74) des Verbindungselements eingreifen sollen. Strahlungsschildanordnung (60) nach Anspruch 25, bei der das interne Strahlungsschildelement (68) ein Ringelement mit einem L-ähnlichen Abschnitt ist, dessen erster Armteil (120) sich parallel zum HCE erstreckt und dessen anderer Armteil (124) sich senkrecht dazu erstreckt. Strahlungsschildanordnung (60) nach Anspruch 29, bei der das interne Strahlungsschildelement (68) Stützbeine aufweist, die gegen den ersten Armteil (120) drücken und radial nach außen vorgespannt sind, um so in die proximalste Falte (74) des Verbindungselements einzugreifen.
Anspruch[en]
A solar system (10) comprising a reflector (18) and a heat collecting element (HCE) received at the focus of the reflector, said HCE having a longitudinal axis extending between a first end and a second end; the HCE comprising a coated tube (16) received within a coaxial evacuated enveloping glass tube (24); said enveloping glass tube (24) being secured at respective ends thereof to the coated tube (16) by a coaxially deformable connector (30) element having a distal end thereof sealingly secured to the coated tube (16) and a proximal end thereof sealingly attached to a respective end of the enveloping glass tube (24) by a glass to metal connection (GMC), characterized in that a radiation shield assembly (60) extends over the connector element (30) and over the GMC; said radiation shield assembly (60) is secured to the connector element (30) by support legs (70, 72) engaging the connector element (30) adjacent the proximal end A solar system (10) according to claim 1, wherein the deformable connector element (30) is a bellows-type element comprising an axial deformation zone formed with several convolutions (32) and a transition zone extending from a most proximal convolution (74) to the GMC zone, wherein the support legs (70, 72) engage said most proximal convolution (74) of the connector element (30). A solar system (10) according to claim 2, wherein the radiation shield assembly (60) comprises an external unitary shield member extending over the deformation zone and the GMC zone. A solar system (10) according to claim 2, wherein the radiation shield assembly (60) comprises a first external shield member (62) extending from the proximal convolution (74) towards the distal end of the connector element (30), and a second external shield member (64) extending from the proximal convolution (74) towards a corresponding end of the glass tube (24). A solar system (10) according to claim 2, wherein the radiation shield assembly (60) comprises a first shield member (62) extending over the deformation zone, and a second shield (64) member extending over the transition zone and the GMC zone. A solar system (10) according to claim 5, wherein the first shield member (62) and the second shield member (64) are secured to the connector element (30) by said support legs (70, 72) engaged to the same convolution (32). A solar system (10) according to claim 1, wherein the support legs (70, 72) are radial segments (78) integrally formed with the radiation shield member (60). A solar system according to claim 4, wherein the first shield member (62) and the second shield (64) member parallely extend with respect to the longitudinal axis of the HCE. A solar system (10) according to claim 2, wherein the radiation shield assembly (60) comprises an internal radiation shield member (68) extending between the coated tube (16) and the enveloping glass tube (24) adjacent the GMC zone; said internal shield member (68) intersecting the longitudinal axis. A solar system (10) according to claim 9, wherein the internal shield member (68) comprising support legs (70, 72) engaged with the most proximal convolution (74) of the connector element (30). A solar system (10) according to claim 10, wherein the internal shield member (68) is a ring element having an L-like section, a first arm portion (120) of which extending parallel to the coated tube (16) and the other arm portion (124) extending perpendicular thereto. A solar system (10) according to claim 9 in combination with claim 4, wherein a distant end of the internal shield member (68) and a distant end of the second external shield member (64) axially overlap one another. A solar system (10) according to claim 11, wherein the internal shield member (68) comprises support legs (128) bearing against the first arm portion (120) and radially biased outwardly so as to engage within the most proximal convolution (74) of the connector element. A solar system (10) according to claim 1, wherein the longitudinal axis of the HCE is positioned so as to extend parallel with the meridian whereby the first end and the second end correspond with north and south, respectively. A solar system (10) according to claim 14, wherein both ends of the HCE are fitted with said radiation shield assembly (60). A solar system (10) according to claim 15, wherein at least the radiation shield assembly (60) at the second end of the HCE is fitted with an internal radiation shield member (68) extending between the coated tube (16) and the enveloping glass tube (24) adjacent the GMC zone; said internal radiation shield member (68) intersecting the longitudinal axis. A solar system (10) according to claim 1, wherein at least an external surface of the shield assembly members is reflective. A solar system (10) according to claim 4, wherein at least an external surface of the first external shield member (62) and the second external shield member (64) is made of a reflective material. A radiation shield assembly (60) for a solar system (10) of the type comprising a reflector (18) with a heat collecting element (HCE) received at the focus of the reflector, said HCE comprising a coated tube (16) with a longitudinal axis extending between a first end and a second end; the coated tube being received within a coaxial evacuated enveloping glass tube (24); said enveloping glass tube (24) being secured at respective ends thereof to the coated tube (16) by a coaxially deformable connector element (30) having a distant end thereof sealingly secured to the coated tube (30) and a proximal end thereof sealingly attached to a respective end of the enveloping glass tube (24) by a glass to metal connection (GMC); characterized in that said radiation shield assembly (60) extends over the connector element (30) and over the GMC; said radiation shield assembly (60) is secured to the connector element (30) by support legs (70, 72) engaging the connector element (30) adjacent the proximal end. A radiation shield assembly (60) according to claim 19, wherein the support legs (70, 72) engage a most proximal convolution (74) of the connector element. A radiation shield assembly (60) according to claim 19, comprising a unitary shield member extending over an axial deformation zone of the connector element and over the GMC zone. A radiation shield assembly (60) according to claim 20, comprising a first external shield member (62) extending from the proximal convolution (74) towards the distal end of the connector element (30), and a second external shield member (64) extending from the proximal convolution (74) towards a corresponding end of the glass tube (24). A radiation shield assembly (60) according to claim 20, comprising a first external shield member (62) extending over a deformation zone of the connector element (30), and a second external shield member (64) extending over a transition zone of the connector element (30) and the GMC zone. A radiation shield assembly (60) according to claim 22, wherein the first external shield member (62) and the second external shield member (64) are secured to the connector element (30) by support legs (70, 72) engaged to the same convolution (32). A radiation shield assembly (60) according to claim 19, further comprising an internal radiation shield member (68) extending between the coated tube (16) and the enveloping glass tube (24) adjacent the GMC zone; said internal radiation shield member (68) intersecting the longitudinal axis. A radiation shield assembly (60) according to claim 19, wherein the shield member is a band of material formed into a closed ring-like shape and secured in this position; said shield member integrally comprise a plurality of support legs radially extending inwardly. A radiation shield assembly (60) according to claim 19, wherein at least an outer surface of shield member of the assembly is reflective. A radiation shield assembly (60) according to claim 25, wherein the internal radiation shield member (68) comprises support legs (70, 72) to be engaged with the most proximal convolution (74) of the connector element. A radiation shield assembly (60) according to claim 25, wherein the internal radiation shield member (68) is a ring element having an L-like section, a first arm portion (120) of which extending parallel to the HCE and the other arm portion (124) extending perpendicular thereto. A radiation shield assembly (60) according to claim 29, wherein the internal radiation shield member (68) comprises support legs bearing against the first arm portion (12) and radially biased outwardly so as to engage within the most proximal convolution (74) of the connector element.
Anspruch[fr]
Système solaire (10) comprenant un réflecteur (18) et un élément de collecte de chaleur (HCE) reçu au foyer du réflecteur, ledit HCE ayant un axe longitudinal s'étendant entre une première extrémité et une seconde extrémité ; l'élément HCE comprenant un tube revêtu (16) reçu à l'intérieur d'un tube d'enveloppement coaxial (24) mis sous vide ; ledit tube d'enveloppement en verre (24) étant fixé à ses extrémités respectives au tube revêtu (16) par un élément connecteur déformable de manière coaxiale (30) ayant une extrémité distale de celui-ci fixée de manière étanche au tube revêtu (16) et une extrémité proximale de celui-ci reliée de manière étanche à une extrémité respective du tube d'enveloppement en verre (24) par une liaison verre/métal (GMC), caractérisé en ce qu'un ensemble d'écran anti rayonnement (60) s'étend sur l'élément connecteur (30) et sur la liaison GMC ; en ce que ledit ensemble d'écran anti rayonnement (60) est fixé à l'élément connecteur (30) par des pattes de support (70, 72) venant en contact avec l'élément connecteur (30) adjacent à l'extrémité proximale. Système solaire (10) selon la revendication 1, dans lequel l'élément connecteur déformable (30) est un élément de type similaire à un soufflet comprenant une zone de déformation axiale formée avec plusieurs plis (32) et une zone de transition s'étendant du pli le plus proximal (74) jusqu'à la zone GMC, dans lequel les pattes de support (70, 72) viennent en contact avec ledit pli le plus proximal (74) de l'élément connecteur (30). Système solaire (10) selon la revendication 2, dans lequel l'ensemble d'écran anti rayonnement (60) comprend un élément d'écran unitaire externe s'étendant sur la zone de déformation et sur la zone GMC. Système solaire (10) selon la revendication 2, dans lequel l'ensemble d'écran anti rayonnement (60) comprend un premier élément d'écran externe (62) s'étendant du pli proximal (74) jusqu'à l'extrémité distale de l'élément connecteur (30) et un second élément d'écran externe (64) s'étendant du pli proximal (74) jusqu'à une extrémité correspondante du tube en verre (24). Système solaire (10) selon la revendication 2, dans lequel l'ensemble d'écran anti rayonnement (60) comprend un premier élément d'écran (62) s'étendant sur la zone de déformation, et un second élément d'écran (64) s'étendant sur la zone de transition et sur la zone GMC. Système solaire (10) selon la revendication 5, dans lequel le premier élément d'écran (62) et le second élément d'écran (64) sont fixés à l'élément connecteur (30) par lesdites pattes de support (70, 72) en contact avec le même pli (32). Système solaire (10) selon la revendication 1, dans lequel les pattes de support (70, 72) sont des segments radiaux (78) formés d'un seul tenant avec l'ensemble d'écran antirayonnement (60). Système solaire (10) selon la revendication 4, dans lequel le premier élément d'écran (62) et le second élément d'écran (64) s'étendent de manière parallèle à l'axe longitudinal de l'élément HCE. Système solaire (10) selon la revendication 2, dans lequel l'ensemble d'écran antirayonnement (60) comprend un élément d'écran antirayonnement interne (68) s'étendant entre le tube revêtu (16) et le tube d'enveloppement en verre (24) adjacent à la zone GMC ; ledit élément d'écran interne (68) coupant l'axe longitudinal. Système solaire (10) selon la revendication 9, dans lequel l'élément d'écran antirayonnement (68) comprend des pattes de support (70, 72) en contact avec le pli le plus proximal (74) de l'élément connecteur (30). Système solaire (10) selon la revendication 10, dans lequel l'élément d'écran anti rayonnement interne (68) est une bague ayant une section en coupe similaire à un L, dont une première partie de bras (120) s'étend de manière parallèle au tube revêtu (16) et l'autre partie de bras (124) s'étend de manière perpendiculaire à celui-ci. Système solaire (10) selon la revendication 9, en combinaison avec la revendication 4, dans lequel une extrémité distante de l'élément d'écran antirayonnement (68) et une extrémité distante du second élément d'écran externe (64) se chevauchent axialement l'une par rapport de l'autre. Système solaire (10) selon la revendication 11, dans lequel l'élément d'écran interne (68) comprend des pattes de support (128) reposant contre la première partie de bras (120) et déviées de manière radiale vers l'extérieur de façon à venir en contact avec l'intérieur du pli le plus proximal (74) de l'élément connecteur. Système solaire (10) selon la revendication 1, dans lequel l'axe longitudinal de l'élément HCE est positionné de façon à s'étendre parallèlement au méridien, de sorte que la première extrémité et la seconde extrémité correspondent au nord et au sud, respectivement. Système solaire (10) selon la revendication 14, dans lequel les deux extrémités de l'élément HCE sont équipées dudit ensemble d'écran antirayonnement (60). Système solaire (10) selon la revendication 15, dans lequel au moins l'ensemble d'écran antirayonnement (60) au niveau de la seconde extrémité de l'élément HCE est équipé d'un élément d'écran antirayonnement interne (68) s'étendant entre le tube revêtu (16) et le tube d'enveloppement en verre (24) adjacent à la zone GMC ; ledit élément d'écran antirayonnement interne (68) coupant l'axe longitudinal. Système solaire (10) selon la revendication 1, dans lequel au moins une surface externe des éléments d'écran est réfléchissante. Système solaire (10) selon la revendication 4, dans lequel au moins une surface externe du premier élément d'écran externe (62) et du second élément d'écran externe (64) est réalisée en un matériau réfléchissant. Ensemble d'écran antirayonnement (60) pour un système solaire (10) du type comprenant un réflecteur (18) avec un élément de collecte de chaleur (HCE) reçu au foyer du réflecteur, ledit HCE comprenant un tube revêtu (16) avec un axe longitudinal s'étendant entre une première extrémité et une seconde extrémité ; le tube revêtu étant reçu dans un tube d'enveloppement en verre coaxial (24) mis sous vide ; ledit tube d'enveloppement en verre (24) étant fixé au niveau de ses extrémités respectives au tube revêtu (16) par un élément connecteur déformable de manière coaxiale (30) ayant une extrémité distale de celui-ci fixée de manière étanche au tube revêtu (16) et une extrémité proximale de celui-ci reliée de manière étanche à une extrémité respective du tube d'enveloppement en verre (24) par une liaison verre/métal (GMC), caractérisé en ce que ledit ensemble d'écran antirayonnement (60) s'étend sur l'élément connecteur (30) et sur la liaison GMC ; en ce que ledit ensemble d'écran antirayonnement (60) est fixé à l'élément connecteur (30) par des pattes de support (70, 72) venant en contact avec l'élément connecteur (30) adjacent à l'extrémité proximale. Ensemble d'écran antirayonnement (60) selon la revendication 19, dans lequel les pattes de support (70, 72) viennent en contact avec un pli plus proximal (74) de l'élément connecteur. Ensemble d'écran antirayonnement (60) selon la revendication 19, comprenant un élément d'écran unitaire s'étendant sur une zone de déformation axiale de l'élément connecteur et sur la zone GMC. Ensemble d'écran antirayonnement (60) selon la revendication 20, comprenant un premier élément d'écran externe (62) s'étendant du pli proximal (74) vers l'extrémité distale de l'élément connecteur (30) et un second élément d'écran externe (64) s'étendant du pli proximal (74) jusqu'à une extrémité correspondante du tube en verre (24). Ensemble d'écran antirayonnement (60) selon la revendication 20, comprenant un premier élément d'écran externe (62) s'étendant sur une zone de déformation de l'élément connecteur (30) et un second élément d'écran externe (64) s'étendant sur une zone de transition de l'élément connecteur (30) et de la zone GMC. Ensemble d'écran antirayonnement (60) selon la revendication 22, dans lequel le premier élément d'écran externe (62) et le second élément d'écran externe (64) sont fixés à l'élément connecteur (30) par des pattes de support (70, 72) en contact avec le même pli (32). Ensemble d'écran antirayonnement (60) selon la revendication 19, comprenant en outre un élément d'écran antirayonnement interne (68) s'étendant entre le tube revêtu (16) et le tube d'enveloppement en verre (24) adjacent à la zone GMC ; ledit élément d'écran antirayonnement interne (68) coupant l'axe longitudinal. Ensemble d'écran antirayonnement (60) selon la revendication 19, dans lequel l'élément d'écran est une bande de matériau formée dans une forme similaire à un anneau fermé et fixée dans cette position ; dans lequel ledit élément d'écran comprend d'un seul tenant une pluralité de pattes de support s'étendant de manière radiale vers l'intérieur. Ensemble d'écran antirayonnement (60) selon la revendication 19, dans lequel au moins une surface externe de l'élément d'écran de l'ensemble est réfléchissante. Ensemble d'écran antirayonnement (60) selon la revendication 25, dans lequel l'élément d'écran antirayonnement interne (68) comprend des pattes de support (70, 72) destiné à venir en contact avec le pli le plus proximal (74) de l'élément connecteur. Ensemble d'écran antirayonnement (60) selon la revendication 25, dans lequel l'élément d'écran antirayonnement interne (68) est une bague ayant une section en coupe similaire à un L, dont une première partie de bras (120) s'étend de manière parallèle au HCE et l'autre partie de bras (124) s'étend de manière perpendiculaire à celui-ci. Ensemble d'écran antirayonnement (60) selon la revendication 29, dans lequel l'élément d'écran antirayonnement interne (68) comprend des pattes de support reposant contre la première partie de bras (12) et déviée de manière radiale vers l'extérieur de façon à venir en contact avec le pli le plus proximal (74) de l'élément connecteur.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com