(21) Aktenzeichen: 10 2004 006 986.7
(22) Anmeldetag: 12.02.2004
(43) Offenlegungstag: 01.09.2005
KG, 87490 Haldenwang, DE
(74) Vertreter: BEETZ & PARTNER Patentanwälte, 80538
München
(72) Erfinder: Knestel, Anton, 87496 Untrasried, DE

(54) Bezeichnung: Verfahren und Vorrichtung zum Bestimmen eines Dämpfungsmaßes für Schwingungen von Fahrzeugen

Beschreibung

[0003] Um einen guten Kompromiss mit möglichst wenig Radlastschwankungen, d.h. eine gute Straßenlage, und trotzdem hohem Komfort zu erreichen, können Stoßdämpfer mit variablen, nicht gleichmäßigen Kennlinien ausgebildet werden. Beispielsweise kann die Druckstufe schwächer ausgelegt werden als die Zugstufe und/oder der Dämpfer verfügt bei kleineren Geschwindigkeiten v_D der Relativbewegung der bewegten Teile im Dämpfer über eine größere Dämpfungskonstante K als bei höheren Geschwindigkeiten, d.h. die Dämpfungskonstante weist eine nichtlineare Kennlinie auf. Um die Schwingungen des Fahrzeugaufbaus besser bedämpfen zu können, werden Stoßdämpfer teilweise so ausgelegt, dass die Dämpferkraft F_D bei kleinen Geschwindigkeiten stark ansteigt und ab ca. 0,1 bis 0,2 m/s flacher wird. Für die Dämpfungskonstante K eines Stoßdämpfers gilt

$$K = \frac{F_D}{v_D \left[\frac{N_s}{m} \right]}$$

[0004] Bei derartigen nicht-linearen Dämpfern ist die Dämpfungskonstante K bei kleinen Geschwindigkeiten größer und nimmt bei größeren Geschwindigkeiten ab. Insbesondere bei Fahrzeugen, die mit Blockierverhinderungssystemen bzw. Stabilitätssystemen ausgestattet sind, ist der Einfluss der Fahrzeugdämpfung für die richtige Funktion der Fahrruhilsysteme bedeutsam. Beispiele für Stoßdämpferkennlinien sind in Bild 6 dargestellt. Diese Figur zeigt die Dämpferkraft für die Zug- und Druckstufe eines Fahrzeugs mit unterschiedlichen, zum Teil modifizierten Stoßdämpfern, deren Dämpferwirkung zwischen 100 % (neue, voll funktionsfähige Dämpfer) und 15 % (defekte Stoßdämpfer) variiert.

Stand der Technik

[0007] Um die Führung der Aufstandsplatte und den Extenderantrieb zur Erregung des Systems von dem Fahrzeuggewicht zu entlasten, wird in der DE 101 43 492 ein weiteres elastisches Element zum Abstützen der Aufstandsplatte gegen einen Rahmen der Prüfvorrichtung vorgeschlagen. Durch das Vorsehen dieser se-

[0008] Die Fig. 7 zeigt ein Beispiel eines typischen Frequenzverlaufs der Aufbauresonanz, der Prüfstandsresonanz und der Achsresonanz (von links nach rechts). Die Amplitude der Aufbauresonanz hat einen Maximalwert zwischen 1 und 2 Hz und die Achsresonanz weist ein Maximum zwischen 12 und 20 Hz auf. Aufgrund dieser charakteristischen Werte für die Resonanzstellen von Fahrzeugen ist es zweckmäßig, den Prüfstand so auszulegen, dass die Prüfstandsresonanz zwischen dem Maximum der Aufbauresonanz und der Achsresonanz liegt (typischerweise bei ca. 7 Hz).

[0009] Wird nun dieses Feder-Masse-System z.B. durch einen Kurbeltrieb in eine erzwungene Schwingung versetzt und dabei die Resonanzfrequenz des Prüfaufsau, welche im Wesentlichen durch das Feder-Masse-System der Aufstandsplatte bestimmt wird, durchfahren, so bildet sich eine Resonanzüberhöhung, die um so stärker ist, je schwächer das System durch den Stoßdämpfer bedämpft wird.

Aufgabenstellung

[0012] Es ist die Aufgabe der vorliegenden Erfindung, ein Beurteilungsmaß für die Dämpfung von Fahrzeugschwingungen durch Schwingungsdämpfer bereitzustellen, das eine zuverlässige Beurteilung der Wirksamkeit von Schwingungsdämpfern im eingebauten Zustand ermöglicht, und ein entsprechendes Verfahren und eine geeignete Vorrichtung zu dessen Ermittlung vorzusehen.

Erfasst der Bewegung des erregten Fahrzeuggrades oder der Aufstandsplatte, auf der das Rad aufsteht. Zweckmäßigerweise wird die Amplitude \(\hat{x} \) der erzwungenen Schwingung von Fahrzeugrad bzw. von der Aufstandsplatte mittels geeigneter Sensoren ermittelt. Diese können beispielsweise die Bewegung des Rads anhand einer daran angebrachten Markierung optisch erfassen. Da der Fahrzeugreifen durch die Reifenfeder eine Federwirkung aufweisen kann, ist es möglich, dass die Bewegungen von Radaufhängung und Schwingungsdämpfer nicht identisch mit der Bewegung der Aufstandsplatte verlaufen. Die am Schwingungsdämpfer auftretende Bewegungsamplitude kann deshalb, z.B. mittels eines Korrekturfaktors, aus der
eventuell einfacher zu erfassenden Amplitude der Aufstandsplatte bestimmt werden, wobei die Federwirkung der Reifenfeder in dem Korrekturkoeffizient berücksichtigt werden kann. Grundsätzlich ist es für die vorliegende Erfindung möglich, sowohl die Bewegung des Rades als auch die Bewegung der Aufstandsplatte zu erfassen und auszuwerten.

- Ermitteln der Dämpfungskonstante K des Schwingungsdämpfers anhand der erfassten Bewegung des Fahrzeugrades bzw. der Aufstandsplatte.

Dies geschieht vorzugsweise anhand des Verhältnisses A zwischen einer Amplitude r der Erregung und der erfassten Amplitude \tilde{x}, der Bewegung des Fahrzeugrads bzw. der Aufstandsplatte im Resonanzfall: $A = r/\tilde{x}$.

Da vorzugsweise die Erregung des Fahrzeugrads bzw. der Aufstandsplatte über ein elastisches Element erfolgt, kann die Dämpfungskonstante K des Schwingungsdämpfers anhand der Federkonstanten D_1 des elastischen Elements, des Amplitudenvorverhältnisses A und der Resonanzfrequenz ω_0, gemäß folgender Formel ermittelt werden:

$$K = \frac{D_1 \cdot r}{\omega_0 \cdot \tilde{x}} = \frac{D_1}{\omega_0} \cdot A$$

Die Resonanzfrequenz $\omega_0 = 2\pi f_j$ für das schwingende System kann beispielsweise durch Auswertung der Amplituden \tilde{x}, bestimmt werden, da bei wo ein leicht zu erkennendes Maximum der Amplitude auftritt. Zu einem ähnlichen Ergebnis gelangt man auch über eine Betrachtung der Maschinendynamik unter Berücksichtigung des Lehr'schen Dämpfungsmaßes für Schwingungen. Die Dämpfungskonstante K kann anhand der schwingenden Masse m (Masse m_1, Aufstandsplatte und ungefederete Masse m_2 des Rads) der Federkonstanten D_1, des elastischen Elements der Federkonstanten D_3 der Fahrzeugfeder und des Amplitudenvorverhältnisses A ermittelt werden. Da $m_1 >> m_2$ und $D_1 >> D_3$ gilt, kann die Dämpfungskonstante K ohne eine explizite Kenntnis der Resonanzfrequenz des schwingenden Systems ermittelt werden:

$$K = \frac{D_1 m_1}{\tilde{x}_1} \cdot r = D_1 \cdot \frac{A}{\sqrt{\frac{m_2}{m_1}}}$$

In diesem Zusammenhang sei angemerkt, dass in der vorliegenden Erfindung das Lehr'sche Dämpfungsmaß für die erzwungene gemeinsame Schwingung von Aufstandsplatte und Rad nur dazu verwendet wird, die Dämpfungskonstante K des Schwingungsdämpfers zu ermitteln, während bei den bekannten Prüfverfahren nach dem Stand der Technik das Lehr'sche Dämpfungsmaß für die Dämpfung der Schwingung des Prüfstands mit dem Fahrzeug als abschließendes Beurteilungskriterium für den Schwingungsdämpfer des Fahrzeugs herangezogen wird.

- Ermitteln eines Dämpfungsmaßes für die Bedämpfung einer Schwingung der Fahrzeugkarosserie durch den Schwingungsdämpfer anhand der ermittelten Dämpfungskonstante K des Dämpfers.

[0015] Gemäß der vorliegenden Erfindung wird, basierend auf der ermittelten Dämpfungskonstante K ein Maß für die Bedämpfung einer Fahrzeugschwingung durch den Schwingungsdämpfer bestimmt. Dieses Dämpfungsmaß ist unabhängig von den Eigenschaften des Prüfbaus, wie der Masse m, der Aufstandsplatte und der Federkonstante D_1 des elastischen Elements. Deshalb eignet sich dieses Dämpfungsmaß besser als Beurteilungsmaß für die Funktionsfähigkeit des Schwingungsdämpfers als die bekannten Dämpfungsmaße.

[0017] Zur Beurteilung der Dämpfung von Fahrzeugschwingungen kann die Berechnung des Lehrschen
Dämpfungsmaßes anhand einer anteiligen Fahrzeugmasse, mit welcher der Schwungdämpfer belastet wird, ausgeführt werden. Bei Fahrzeugen mit vier Rädern entspricht diese anteilige Fahrzeugmasse, die dem Fahrzeuggewicht entspricht, das sich auf das jeweilige Fahrzeugrad abstützt, ungefähr einem Viertel der gesamten Fahrzeugmasse. Um unterschiedliche Lasten zwischen den Fahrzeugachsen zu berücksichtigen kann auch die entsprechende halbe zulässige Achslast als anteilige Fahrzeugmasse herangezogen werden. Dies ist besonders vorteilhaft, da für viele Fahrzeuge die zulässige Achslast, z.B. aus dem Kraftfahrzeuggesetz, bekannt ist. Um den Anteil der ungefederten Massen an der zulässigen Achslast zu berücksichtigen, kann diese mit einem Faktor (beispielsweise 0,95) korrigiert werden. Die Verwendung der zulässigen Achslast hat den Vorteil, daß das Fahrzeug unter der Bedingung einer maximalen Beladung betrachtet wird und das Schwingungsverhalten für diesen Fall berücksichtigt werden kann.

[0018] Die Genauigkeit des ermittelten Dämpfungsmaßes kann weiter erhöht werden, indem die tatsächliche anteilige Fahrzeugmasse \(m_4 \) für den zu prüfenden Schwungdämpfer anhand einer Messung ermittelt wird. Zur Messung der anteiligen Fahrzeugmasse \(m_4 \) eignet sich insbesondere eine Waage, auf die das jeweilige zu prüfende Fahrzeugrad aufgestellt wird. Hierbei ist es zweckmäßig, die ungefederten Massen \(m_5 \) des Rades und der Radaufhängung zu berücksichtigen, da das gemessene Gewicht der Gesamtmasse \(m_4 + m_5 \) entspricht. Zur Vereinfachung kann hierbei angenommen werden, daß \(m_5 \approx 5 \% \) von \(m_5 \) beträgt. In diesem Fall kann der gemessene Wert für die auf die Aufstandsplatte wirkende Gesamtmasse mit einem Faktor 0,95 korrigiert werden, um eine ausreichend genaue Abschätzung für die anteilige Fahrzeugmasse \(m_4 \) zu erhalten.

[0019] Eine besonders bevorzugte Ausgestaltung der Erfindung sieht vor, dass die Waage in die Prüvorrichtung integriert ist. In diesem Fall kann der Schritt zur Ermittlung der anteiligen Fahrzeugmasse beispielsweise auf der Messung einer Absenkung der Aufstandsplatte durch die Belastung mit dem Fahrzeug erfolgen. Aufgrund der bekannten Federkonstanten der die Aufstandsplatte abstützenden Federelemente kann so die jeweilige anteilige Fahrzeugmasse \(m_4 \) ohne zusätzlichen konstruktiven Aufwand ermittelt werden.

[0020] Bei bekannter Federkonstante \(D_3 \) der Fahrzeugfeder lässt sich so das Lehr'sche Dämpfungsmaß für das Fahrzeug gemäß folgender Formel:

\[
\vartheta = \frac{K}{2 \cdot \sqrt{D_3 \cdot m_4}} = \frac{K}{2 \cdot m_4 \cdot \sqrt{D_3 \cdot m_4}} = \frac{K}{2 \cdot m_4 \cdot \omega_A}
\]

berechnen. Da die Resonanzfrequenz \(\omega_A \) des Fahrzeugaufbaus für die meisten Fahrzeuge bekannt ist bzw. sich die Resonanzfrequenzen unterschiedlicher Fahrzeuge kaum voneinander unterscheiden, ist es zweckmäßig, das Lehr'sche Dämpfungsmaß unter Berücksichtigung einer vorgegebenen festen Resonanzfrequenz \(\omega_A \) für eine Schwingung des Fahrzeugaufbaus zu bestimmen. Diese kann beispielsweise aus einem zuvor ermittelten Katalog für den jeweilig zu prüfenden Fahrzeugtyp entnommen werden. Es ist auch möglich, verschiedene Fahrzeugtypen in Kategorien aufzuteilen und eine typische Aufbauresonanzfrequenz für die jeweilige Fahrzeugkategorie heranzuziehen.

[0022] Vorzugsweise weist das erfindungsgemäß Verfahren einen weiteren Beurteilungsschritt zum Beurteilen der Dämpfungseigenschaften des Schwungdämpfers auf, wobei das für den zu prüfenden Schwungdämpfer ermittelte Dämpfungsmaß \(\vartheta \) mit einem vorgegebenen Grenzwert \(G \) verglichen wird. Unterschreitet das erfindungsgemäß ermittelte Lehr'sche Dämpfungsmaß \(\vartheta \) für den Schwungdämpfer beispielsweise einen vorgegebenen Grenzwert \(G = 0,1 \), so ist davon auszugehen, dass der Schwungdämpfer nicht mehr ausreichend zu einer Bedämpfung einer Schwingung des Fahrzeugs geeignet ist und seine Funktion deshalb nicht mehr ausreichend füllt. In diesem Fall ist der Schwungdämpfer als defekt zu beurteilen und auszutauschen.

[0031] Die Beurteilungsmittel bestimmen bevorzugt das Lehr'sche Dämpfungsmaß für eine Schwingung der Fahrzeugkarosserie anhand der ermittelten Dämpfungskonstante K des Schwingungsdämpfers.

[0032] Zweckmäßigerweise weist die Vorrichtung Fahrzeugmassebestimmungsmittel zum Ermitteln der anteiligen Fahrzeugmasse m_p auf.

[0035] Um die Funktionsfähigkeit des zu prüfenden Schwingungsdämpfers festzustellen, können Beurteilungsmittel die Dämpfungseigenschaften des Schwingungsdämpfers beurteilen, indem das ermittelte Dämpfungsmaß mit einem vorgegebenen Grenzwert G verglichen wird.

[0036] Zur Kompensation der Schwingungsdämpfung durch Reibung in der Prüfvorrichtung können die Berechnungsmittel eine Kompensationsvorrichtung aufweisen, welche von dem ermittelten Wert für die Dämpfungskonstante K die Dämpfungskonstante Kₚ der Prüfvorrichtung subtrahieren, um so eine korrigierte Dämpfungskonstante K' des Schwingungsdämpfers zu erhalten.

Ausführungsbeispiel

[0037] Weitere Besonderheiten und Vorzüge der Erfindung lassen sich den Zeichnungen und der folgenden Beschreibung bevorzugter Ausführungsbeispiele entnehmen. Es zeigen:

[0038] Fig. 1 schematisch ein Ausführungsbeispiel für einen Stoßdämpferprüstand nach der vorliegenden Erfindung,

[0039] Fig. 2 ein Schwingungsmodell für ein Fahrzeug auf einem Stoßdämpferprüstand mit vier Massen,

[0040] Fig. 3 ein vereinfachtes Schwingungsmodell für einen Ein-Masse-Schwing,

[0041] Fig. 4 den Amplitudenvorlauf von Resonanzschwingungen bei verschiedenen Dämpfungsgraden,

[0042] Fig. 5 einen typischen Verlauf der Schwingung der Aufstandsplatte bei einem Ausschwingversuch,

[0043] Fig. 6 Beispiele für Stoßdämpferkennlinien,

[0044] Fig. 7 ein Beispiel eines typischen Frequenzverlaufs der Aufbauresonanz, der Prüfstandsresonanz und der Achsresonanz,

[0045] Fig. 8 die Abhängigkeit der Dämpfungskonstante Kₚ des Prüfstands von der Plattenamplitude,

[0046] Fig. 9 ein Flussdiagramm für ein Verfahren zum Bestimmen eines Dämpfungsmaßes für Schwingungsdämpfer gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.

[0047] Die Fig. 2 zeigt ein Schwingungsmodell für ein Fahrzeug auf einem Stoßdämpferprüstand mit vier Massen m bis mₐ, wobei m die Masse der Aufstandsplatte des Prüfstands, mₚ die ungefederten Massen eines Fahrzeuggrads (Radmasse, Achsmasse, Masse der Radaufhängung, usw.), mₐ die Masse des Stoßdämpfers und mₚ die anteilige Karosseriemasse des Fahrzeugs darstellt. Die jeweiligen Auslenkungen der Massen bei ihren Schwingungen werden mit xₚ bis xₐ bezeichnet, wobei xₚ die Auslenkung der Erregung, beispielsweise durch einen Kurbeltrieb, darstellt. Die als Federn dargestellten elastischen Elemente sind die Prüfstandsfeeder zwischen Kurbeltrieb und Prüfstandsplatte, die Reifenfeder, die Fahrzeugfeder und die Federwirkung des Stoßdämpfers. Die entsprechenden Federkonstanten werden in dieser Reihenfolge mit D₁ bis Dₜ bezeichnet. Die Dämpfungskonstante des Schwingungsdämpfers des Fahrzeugs ist mit K bezeichnet.

[0048] Anhand des oben erläuterten Schwingungsmodells soll im Weiteren zuerst die Dämpfungskonstante K ermittelt werden. Hierzu wird aufgrund des Energieerhaltungssatzes angenommen, dass die vom Kurbeltrieb
in das System eingespeiste Energie bzw. Leistung vom Stoßdämpfer aufgenommen wird. Hierzu wird die eingespeiste Leistung \(P(t) = F_s \cdot x_s(t) \) bestimmt, wobei \(F_s = D_1 (x_1(t) - x_2(t)) \) die vom Kurbeltrieb auf die Aufstandsplatte übertragene Kraft \(F_s \) ist.

[0049] Mit der Gleichung \(x_s(t) = r \cdot \cos(\omega t) \) für die Bewegung des Kurbeltriebs kann sodann die Leistung \(P(t) \) bestimmt werden. Durch Integration über eine Periode der Schwingung wird die Wirkleistung des Prüfstands

\[
P_{WP} = \pi \cdot D_1 \cdot r \cdot \tilde{x}_1 \cdot f \cdot \sin(\varphi_0)
\]

ermittelt. Hierbei ist \(\tilde{x}_1 \) die Amplitude der Schwingbewegung der Aufstandsplatte und \(f \) die Erregungsfrequenz. Mit \(\varphi_0 \) wird der Phasenwinkel zwischen der Erregungsschwingung und der Schwingung der Aufstandsplatte bezeichnet.

[0050] Für die vom Stoßdämpfer aufgenommene Leistung gilt \(P(t) = F_D \cdot v_D \), wobei \(F_D \) die Dämpfungskraft des Stoßdämpfers ist. Für diese gilt \(F_D = v_D \cdot K \) mit \(v_D = \tilde{x}_2 - \tilde{x}_1 \) als Geschwindigkeit der bewegten Teile des Dämpfungsmechanismus.

[0051] Da die Masse der Karosserie im Vergleich zu den anderen bewegten Massen sehr viel größer ist, kann angenommen werden, dass sich die Karosserie in Ruhe befindet. Weiterhin ist das Stoßdämpferauge sehr hart (d.h. \(D_1 \) sehr groß) und hat nur einen geringen Federweg, sodass \(x_s = x_0 = 0 \) gilt. Wird weiterhin die Reifenverformung vernachlässigt (d.h. \(D_2 \) sehr groß, \(x_s = x_1 \)), so ergibt sich das in **Fig. 3** dargestellte vereinfachte Schwingungsmodell für einen Ein-Masse-Schwinger. Für die schwingende Masse aus Aufstandsplattenmasse und ungefedertem Masse des Fahrzeuggrades gilt \(m = m_1 + m_2 \).

[0052] Unter Berücksichtigung der oben genannten Annahmen kann die vom Stoßdämpfer aufgenommene Leistung zu \(P(t) = K \cdot \omega^2 \cdot \tilde{x}_1^2 \) berechnet werden. Wieder wird durch Integration über eine Periode der Schwingung die Wirkleistung des Stoßdämpfers bestimmt:

\[
P_{WD} = 2 \pi^2 \cdot K \cdot f^2 \cdot \tilde{x}_1^2
\]

Nach dem Energiehaltungssatz gilt: \(P_{WP} = P_{WD} \). Da im Resonanzfall die schwingende Masse und die Erregung eine Phasenverschiebung \(\varphi_0 = 90^\circ \) aufweisen, kann die Dämpfungskonstante \(K \) des Schwingungsdämpfers wie folgt bestimmt werden:

\[
K = \frac{D_1 \cdot r}{\omega_0 \cdot \tilde{x}_1} = \frac{D_1 \cdot r}{2 \pi \cdot f_0 \cdot \tilde{x}_1} \quad \text{(Formel 1)}
\]

[0053] Diese Formel ermöglicht eine Berechnung der Dämpfungskonstante \(K \) des Schwingungsdämpfers anhand des Verhältnisses \(A \) zwischen der Erregungsamplitude \(r \) und der erfassten Amplitude \(\tilde{x}_1 \), der Bewegung der Aufstandsplatte sowie unter Berücksichtigung der bekannten Federkonstante \(D_1 \), der Prüfstandsfeeder und der Resonanzfrequenz \(\omega_0 = 2 \pi f_0 \) des Prüfstands.

[0054] Bei Fahrzeugen mit nicht-linearer Dämpfungskennlinie gilt der ermittelte Wert für die Dämpfungskonstante \(K \) für die Bedingungen (Geschwindigkeit \(v_D \), Erregungsamplitude \(r \)), unter denen die Messung vorgenommen wurde. Durch eine geeignete Auswahl der Prüfbedingungen kann jedoch die Dämpfungskonstante \(K \) für einen Stoßdämpfer mit ausreichender Genauigkeit bestimmt werden.

[0055] Die **Fig. 4** zeigt den Amplitudenverlauf von Resonanzschwingungen bei verschiedenen Dämpfungsgraden. Auf der Ordinate ist die Vergrößerungsfunktion

\[
V = \tilde{x}_1 / r = 1 / A
\]

für beschiedene Dämpfungsmaße über der normierten Frequenz

\[
\eta = \frac{f}{f_0} = \frac{\omega}{\omega_0}
\]

aufgetragen. Wie man erkennen kann, steigt die Amplitude einer gering gedämpften Schwingung im Resonanzfall stark an. Aufgrund des dargestellten Zusammenhangs zwischen einerseits dem Verhältnis der Amplituden der bewegten Masse und der Erregung im Resonanzfall und andererseits dem Dämpfungsmaß \(\eta \) der Schwingung wird ersichtlich, wie aus dem gemessenen Amplitudenverhältnis A der Dämpfungsgrad bzw. die
Dämpfungskonstante K des Schwingungssystems bestimmt werden kann.

[0056] Dabei gilt für das aus der Maschinendynamik bekannte Lehr'sche Dämpfungsmaß \mathcal{G}

$$\frac{\dot{x}}{r} = \frac{1}{2\mathcal{G}\sqrt{1 - \mathcal{G}^2}}$$

[0057] Für schwach gedämpfte Systeme mit $\mathcal{G} \leq 0,25$ kann dieser Zusammenhang vereinfacht werden zu:

$$\frac{\dot{x}}{r} = \frac{1}{A} = \frac{1}{2\mathcal{G}}$$

[0058] Der Zusammenhang zwischen dem Lehr'schen Dämpfungsmaß \mathcal{G} und der Abklingkonstanten δ im Resonanzfall mit der Eigenkreisfrequenz ω_0 ergibt sich aus

$$\mathcal{G} = \frac{\delta}{\omega_0},$$

wobei Abklingkonstante δ und Dämpfungskonstante K gemäß

$$\delta = \frac{K}{2m}$$

im Zusammenhang stehen.

[0059] Unter Berücksichtigung der oben angegebenen Formeln kann ganz allgemein das Lehr'sche Dämpfungsmaß für ein gedämpftes Feder-Masse-System mit der Masse m und der Federrate c gemäß folgender Gleichung ermittelt werden:

$$\mathcal{G} = \frac{K}{2\cdot \sqrt{c \cdot m}} = \frac{K}{2 \cdot m \cdot \sqrt{c / m}} = \frac{K}{2 \cdot m \cdot \omega_0}$$

[0060] Betrachtet man nun das System des Prüfstands mit schwingender Aufstandsplatte, so ergibt sich unter Vernachlässigung der ungefederten Radmasse m_2 ($m_2 \ll m_1$) und der Fahrzeugfeder ($D_2 \ll D_1$) für die Dämpferkonstante K des Schwingungsdämpfers folgender Zusammenhang:

$$K = \frac{\sqrt{D_1 \cdot m_1} \cdot r}{\dot{x}_1} = \frac{D_1}{\omega_0} \cdot A = \frac{D_1}{\sqrt{D_1}} \cdot A \quad \text{(Formel 2)}$$

[0061] Wie aus dieser Gleichung ersichtlich, kann die Dämpfungskonstante K anhand des ermittelten Amplitudenvverhältnisses A, der Federkonstante D_1, der Prüfstandsfe der und der Plattenmasse m_1 des Prüfstands ermittelt werden.

[0063] Im nächsten Schritt wird nun das Fahrzeug ohne Prüfstand betrachtet und anhand der Fahrzeugeigenschaften das Lehr'sche Dämpfungsmaß für die Bedämpfung einer Schwingung der Fahrzeugkarosserie durch den Schwingungsdämpfer als Beurteilungsmaß ermittelt. Hierzu wird eine Schwingung des Fahrzeugaufbaus mit einer anteiligen Fahrzeugmasse m_3 und der Fahrzeugfeder D_3 betrachtet. Diese wird von dem Schwingungsdämpfer mit der nach dem obigen Verfahren ermittelten Dämpferkonstante K bedämpft. Für das Lehr'sche Dämpfungsmaß dieser Schwingung gilt:
\[\vartheta = \frac{K}{2 \cdot \sqrt{D_3 \cdot m_4}} = \frac{K}{2 \cdot m_4 \cdot \omega_A} = \frac{K}{2 \cdot m_4 \cdot \omega_A} \]
(Formel 3)

[0064] Da die Resonanzfrequenz \(\omega_A \) des Karosserieaufbaus zwischen verschiedenen Fahrzeugen in der Regel keine großen Unterschiede aufweist, kann hierfür ein vorgegebener bekannter Wert angenommen werden. Dieser kann z.B. für verschiedene Fahrzeugkategorien festgelegt werden. Typische Aufbauresonanzfrequenzen für PKWs sind 1,4 Hz, für Geländewagen (SUVs) 1,6 Hz und für Transporter 1,8 Hz.

[0065] Das nach obigem Verfahren ermittelte Lehr'sche Dämpfungsmaß \(\vartheta \) für das Fahrzeug stellt ein aussagekräftiges, zuverlässiges und vom Prüfstand unabhängiges Beurteilungsmaß für die Funktionsfähigkeit des Stoßdämpfers dar. Es ist deshalb möglich, einen Grenzwert festzulegen, der von Stoßdämpfern nicht unterschritten werden darf, um die Fahrsicherheit des Fahrzeugs nicht zu gefährden. Aufgrund von empirischen Untersuchungen wurde herausgefunden, dass bei funktionsfähigen Stoßdämpfern \(\vartheta > 0,2 \) gilt und deshalb ein möglicher Grenzwert bei \(G = 0,1 \) liegt.

[0066] Die Fig. 9 zeigt ein Flussdiagramm für ein Verfahren zum Bestimmen eines Dämpfungsmaßes für Schwingungsdämpfer gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.

[0067] In Schritt 100 wird die anteilige Fahrzeugmasse \(m_4 \), mit welcher der zu prüfende Schwingungsdämpfer belastet wird, ermittelt. Dies kann dadurch erfolgen, dass nach dem Auffahren des Fahrzeugs auf die Aufstandsplatte die Absenkung \(s \) der Aufstandsplatte durch die Belastung mit dem Fahrzeuggewicht bei ruhendem Erregerantrieb erfasst wird. Hierzu wird der Prüfstand wie eine Waage verwendet und die anteilige Fahrzeugmasse \(m_4 \) aufgrund des Federgewichtes über das entsprechende anteilige Fahrzeuggewicht \(F_s = m_4 \cdot g = D \cdot s \) bestimmt:

\[m_4 = \frac{D \cdot s}{g} \]
(Formel 4),

wobei \(D \) die effektive Federkonstante des Prüfstands und \(g \) die Erdbeschleunigung ist. Für einen Prüfstand mit einer weiteren Fußpunktfeder mit einer Federkonstante \(D_5 \) zur Abstützung der Aufstandsplatte in dem Prüfstandrahmen gilt: \(D = D_1 + D_5 \). Um die ungefederten Massen \(m_2, m_3 \) zu berücksichtigen, kann der so ermittelte Wert für \(m_4 \) mit einem Korrekturfaktor (z.B. 0.95) korrigiert werden.

[0068] Selbstverständlich kann der Schritt zur Erfassung der anteiligen Fahrzeugmasse \(m_4 \) auch im Anschluss an die Erfassung der Bewegung des erregten Fahrzeuges bzw. der Ermittlung der Dämpfungskonstante \(K \) des Schwingungsdämpfers stattfinden. In diesem Fall würde das auf der Aufstandsplatte aufstehende Fahrzeuggurt zuerst zu einer erzwungenen Schwingung angeregt und anschließend würde der Wiegevorgang stattfinden.

[0069] In Schritt 110 wird das auf der Aufstandsplatte aufstehende Rad zu einer erzwungenen Schwingung erregt. Hierzu wird die Aufstandsplatte über ein elastisches Element von einer Antriebseinheit zu vertikalen Schwingungen angeregt, wobei die Anregungsfrequenz variiert wird. Um eine Resonanz des schwingenden Systems bestehend aus Aufstandsplatte und Fahrzeugrad zu erzeugen, wird beispielsweise die Drehzahl der Antriebseinheit langsam erhöht, um die Resonanzfrequenz zu durchfahren. Alternativ kann die Anregung auch mit einer höheren Drehzahl beginnen, die anschließend langsam erniedrigt wird, so lange bis eine Resonanz eintritt.

[0070] In Schritt 120 wird die Bewegung des erregten Fahrzeuges bzw. der Aufstandsplatte erfasst. Hierzu kann beispielsweise eine Markierung am Fahrzeugraddurchmesser vorgesehen sein, die von entsprechenden Sensoren erfassend wird. Einfacher ist es jedoch, Messaufnahme an der Aufstandsplatte anzubringen und die Amplitude der vertikalen Bewegung der Aufstandsplatte zu erfassen. Da die Reifenfeder im Vergleich zur Prüfstandsfeeder in der Regel eine größere Federkonstante \(D_3 \) aufweist, schwingen Fahrzeugrad und Aufstandsplatte gleichphasig, ohne dass sich das Fahrzeugrad von der Aufstandsplatte löst. Es ist deshalb in der Regel ausreichend, die Bewegung der Aufstandsplatte zu erfassen bzw. die ungefederten Massen des Fahrzeugs und die Aufstandsplatte als eine schwingende Einheit zu betrachten (siehe auch das Ein-Massen-Schwingungs-System in Fig. 3).

[0071] In Schritt 130 wird die Dämpfungskonstante \(K \) des Schwingungsdämpfers basierend auf dem in For-
mel 2 angegebenen Zusammenhang anhand der erfassten Bewegung des Fahrzeuggrads ermittelt. Wie bereits erläutert basiert diese Berechnung auf der Auswertung des Verhältnisses zwischen der Erregungsamplitude \(r \) und der erfassten Amplitude \(\hat{x} \) der Bewegung der Aufstandsplatte bzw. des Fahrzeuggrads im Resonanzfall.

[0072] Um die durch Reibung im Prüfstand verursachte Dämpfung der Schwingung zu berücksichtigen, wird in Schritt 140 der ermittelte Wert für die Dämpfungskonstante \(K \) korrigiert. Die kompensierte Dämpfungskonstante \(K' \) des Schwingungsdämpfers ergibt sich durch Subtraktion der aus dem Prüfvorgang ermittelten Dämpfungskonstante \(K \) um die Dämpfungskonstante \(K_p \) des Prüfstands: \(K' = K - K_p \). Dieser Kompensationsschritt ist hauptsächlich bei kleineren bzw. leichteren Fahrzeugen mit kleineren Dämpfungskonstanten zweckmäßig, da für diese Fahrzeuge die Prüfstandsämpfung bis zu 15 % der gesamten Schwingungsdämpfung betragen kann.

[0073] Um die Verluste des Prüfstands zu bestimmen, kann ein Ausschwingversuch mit einem unbelasteten Prüfstand durchgeführt werden. Hierzu wird die Aufstandsplatte von der Antriebseinheit zu einer Schwingung angeregt, und nach dem Abschalten der Antriebseinheit wird der Amplitudenverlauf der gedämpften Schwingung erfasst. Die Fig. 5 zeigt einen typischen Verlauf der Schwingung der Aufstandsplatte bei einem Ausschwingversuch.

[0074] Die Auswertung des Ausschwingversuchs erfolgt vorzugsweise mit Hilfe des logarithmischen Dekrements. Hierzu werden aus dem Ausschwingversuch die Periodendauer \(T = 1/f \) und die Amplitude \(\hat{x}(t) \) zu einem Zeitpunkt \(t \) sowie die Amplituden nach \(n \) Schwingungen \(\hat{x}(t + nT) \) bestimmt. Für das logarithmische Dekrement gilt:

\[
\Lambda = \frac{1}{n} \ln \left(\frac{\hat{x}(t)}{\hat{x}(t+nT)} \right) = \delta \cdot T.
\]

[0075] Aus der ermittelten Abklingkonstante \(\delta \) kann so die Dämpfungskonstante \(k_p \) des Prüfstands bestimmt werden: \(k_p = 2b \cdot m \).

[0076] Da die Dämpfungskonstante \(k_p \) des Prüfstands in der Regel von der jeweiligen Plattenamplitude abhängig ist (siehe Fig. 8), ist es zweckmäßig einen Ausschwingversuch mit der entsprechenden im Betrieb des Prüfstands zu erwartenden Plattenamplitude durchzuführen. Es ist auch möglich, vorab die jeweiligen Dämpfungskosten \(k_p \) für unterschiedliche Plattenamplituden und/oder Fahrzeuggewichte zu ermitteln und bei der Korrektur der Schwingungsdämpferkonstante die entsprechende Prüfstandsämpfungskonstante \(k_p \) für die Messbedingung (z.B. Plattenamplitude) heranzuziehen. In jedem Fall können die Dämpfungskonstante bzw. die Dämpfungskosten \(k_p \) des Prüfstands vorab bei der Einrichtung und Kalibrierung des Prüfstands ermittelt und gespeichert (z.B. in einem Parameterfeld) werden und sind so bei der Durchführung des Prüfverfahrens für einen Schwingungsdämpfer bereits vorhanden.

[0077] In Schritt 150 wird anhand der Formel 3 das Lehrsche Dämpfungsmaß für die Schwingung des Fahrzeugaufbaus anhand der korrigierten Dämpfungskonstante \(K' \) bestimmt. Hierzu ist es in der Regel ausreichend eine fest vorgegebene Resonanzfrequenz \(\omega_n \) für die Schwingung des Fahrzeugaufbaus anzunehmen. Weiterhin geht die in diesem Beispiel in Schritt 100 ermittelte anteilige Fahrzeugmasse \(m_n \) in die Berechnung ein. Das ermittelte Dämpfungsmaß \(\delta \) kann als Beurteilungskriterium für die Resonanzüberhöhung bzw. Dämpfung der Schwingung des Fahrzeugaufbaus herangezogen werden.

[0078] In Schritt 160 wird das ermittelte Dämpfungsmaß \(\delta \) mit einem vorgegebenen Schwellwert \(G \), beispielsweise 0,1, verglichen. Untersuchungen haben gezeigt, dass die Stoßdämpfer von neuwertigen Fahrzeugen sowie funktionsfähige Stoßdämpfer von älteren Fahrzeugen in der Regel diesen Grenzwert überschreiten.

[0079] Ergibt die Prüfung in Schritt 160, dass das Lehrsche Dämpfungsmaß des Schwingungsdämpfers den vorgegebenen Grenzwert \(G \) überschreitet, so wird der Schwingungsdämpfer in Schritt 180 als funktionsfähig erklärt.

[0080] Anderenfalls wird der geprüfte Schwingungsdämpfer in Schritt 170 zu einem defekten Schwingungsdämpfer erklärt, worauf gegebenenfalls entsprechende Maßnahmen eingeleitet werden können.

[0081] Im Folgenden soll anhand einer Beispielrechnung die Wirkungsweise des erfindungsgemäßen Stoßdämpferprüfstands nochmals verdeutlicht werden. Dazu werden für einen Beispieldruffstand folgende Werte angenommen:
Masse der Aufstandsplatte \(m_2 = 100 \text{ kg} \),
Effektive Federkonstante des Prüfstands \(D = 100,000 \text{ N/m} \)
Radius des Kurbeltriebs \(r = 10 \text{ mm} \).

[0082] Wird bei einer Prüfung mit einem Fahrzeug eine Resonanzamplitude \(\hat{x}_r = 30 \text{ mm} \) erreicht, so lässt sich aus diesen Werten die Dämpfungskonstante \(K \) des Schwingungsdämpfers ermitteln (Formel 2):

\[
K = \frac{100000 \frac{N}{m} \cdot 100 \text{ kg} \cdot 10 \text{ mm}}{30 \text{ mm}} = 1054 \frac{Ns}{m}
\]

[0083] Die anteilige Fahrzeugmasse \(m_4 \) wird anhand der Absenkung der Prüfstandsplatte um \(s = 20 \text{ mm} \) beim Befahren des Prüfstands mit dem Fahrzeug bestimmt (Formel 4):

\[
m_4 = \frac{100000 \frac{N}{m} \cdot 0,020m}{9,81 \frac{m}{s^2}} = 203,8 \text{ kg}
\]

[0084] Mit der so erhaltenen Dämpfungskonstante \(K \) und der anteiligen Fahrzeugmasse \(m_4 \) wird unter der Annahme einer Aufbaufrequenz \(f_a = 1,4 \text{ Hz} \) das Lehr'sche Dämpfungsmaß ermittelt (Formel 3):

\[
\vartheta = \frac{1054 \frac{Ns}{m}}{2 \cdot 203,8 \text{ kg} \cdot 8,8 \text{ s}^{-1}} = 0,289
\]

[0085] Auf diese Weise erhält man ein Beurteilungskriterium, das nicht nur den Dämpfer, sondern die gesamte Dämpfungsgüte für Schwingungen am Fahrzeug widerspiegelt.

[0087] Die Fig. 1 zeigt schematisch ein Ausführungsbeispiel für einen Stoßdämpferprüfstand nach der vorliegenden Erfindung.

[0088] Von dem auf dem Prüfstand aufstehenden Fahrzeug, sind schematisch der Schwingungsdämpfer 1, das Fahrzeugrad 2, die Fahrzeugfeder 12, die Radaufhängung 13 und die Karosserie des Fahrzeugs 14 gezeigt. Gemäß dem Schwingungsmodell aus Fig. 2 entspricht dem Schwingungsdämpfer 1 die Dämpfungskonstante \(K \), der Fahrzeugfeder 12 die Federkonstante \(D_3 \), der Radaufhängung 13 die ungefederte Radmasse \(m_2 \) und der symbolisch dargestellten Karosserie 14 die anteilige Karosseriemasse \(m_4 \).

[0089] Der Stoßdämpferprüfstand weist die Aufstandsplatte 7, den Rahmen 8, die Doppelschwingen 9, die Antriebseinheit 4 und ein erstes elastisches Element 3 auf. Die Aufstandsplatte 7 ist über die Doppelschwingen 9 und das erste elastische Element 3 mit der Antriebseinheit 4 verbunden, welche als Kurbeltrieb wirkt und die Aufstandsplatte 7 sowie das Fahrzeugrad 2 in Schwingung versetzt. Eine Steuereinheit 15 steuert die Drehzahl der Antriebseinheit 4 derart, dass das schwingende System in Resonanz gerät.

[0090] Ein weiteres elastisches Element 6 (Fußpunktfeder) unterstützt die Aufstandsplatte 7 und trägt einen großen Teil des Fahrzeuggewichts (typischerweise zwischen 60 und 90 %), um ein zu starkes Absinken der Aufstandsplatte 7 bei der Belastung mit dem Fahrzeug zu vermeiden.

[0091] In der Nähe der Aufstandsplatte 7 sind Erfassungsmittel 5 vorgesehen, welche die Bewegung der Aufstandsplatte 7 erfassen und ein entsprechendes Signal X an die Berechnungsmittel 10, 11, die Fahrzeugmassenmessungsmittel 16 und die Steuereinheit 15 liefern. In der Steuereinheit 15 kann dieses Signal X dazu genutzt werden, um festzustellen, dass die richtige Drehzahl für eine Resonanz des schwingenden Systems erreicht ist.
[0092] Die Fahrzeugmassebestimmungsmittel 16 ermitteln bei abgeschalteter Erregung anhand der Absenkung s der Aufstandsplatte 7 beim Auffahren des Fahrzeugs und der effektiven Federkonzentrate D die anteilige Fahrzeugmasse m_4.

[0093] Die ersten Berechnungsmittel 10 bestimmen anhand der Amplitude \hat{x}, der Aufstandsplatte 7 im Resonanzfall ($\omega = \omega_0$) und der bekannten Erregungsamplitude r die Dämpfungskonstante K des Schwingungsdämpfers 1 (Formel 2), welche gegebenenfalls mit einer zuvor ermittelten Dämpfungskonstante K_0 des Prüfstands korrigiert werden kann.

[0094] Die zweiten Berechnungsmittel 11 ermitteln anschließend das Lehr'sche Dämpfungsmaß δ für eine Schwingung des Fahrzeugaufbaus basierend auf der anteiligen Fahrzeugmasse m_4 und der Dämpfungskonstante K des Schwingungsdämpfers 1 (Formel 3).

[0095] Anhand eines Vergleichs des ermittelten Dämpfungsmaßes δ mit einem vorgegebenen Grenzwert G wird von den Beurteilungsmitteln 17 die Funktionsfähigkeit des Schwingungsdämpfers 1 beurteilt und ein entsprechendes binäres Prüfsignal erzeugt, welches mit "0" anzeigt, dass der Schwingungsdämpfer 1 das Prüfkriterium nicht erfüllt, und mit "1" anzeigt, dass der Prüfingungsdämpfer 1 die Prüfung bestanden hat.

Patentansprüche

1. Verfahren zum Bestimmen eines Dämpfungsmaßes für Schwingungen von Fahrzeugen, mit den Schritten:
 Erregen eines mit einem zu beurteilenden Schwingungsdämpfer (1) verbundenen Fahrzeuggrads (2),
 Ermitteln der Bewegung des erregten Fahrzeuggrads (2),
 Ermitteln einer Dämpfungskonstante K des Schwingungsdämpfers (1) anhand der ermittelten Bewegung des Fahrzeuggrads (2), und
 Ermitteln des Dämpfungsmaßes für die Bedämpfung einer Schwingung der Fahrzeugkarosserie durch den Schwingungsdämpfer (1) anhand der ermittelten Dämpfungskonstante K des Schwingungsdämpfers (1).

2. Verfahren nach Anspruch 1, wobei das Fahrzeuggrad (2) auf einer periodisch erregten Aufstandsplatte (7) aufsteht, eine Bewegung der Aufstandsplatte (7) erfasst und anhand der erfassten Bewegung der Aufstandsplatte (7) die Bewegung des erregten Fahrzeuggrads (2) ermittelt wird.

3. Verfahren nach Anspruch 1 oder 2, wobei die Dämpfungskonstante K anhand des Verhältnisses zwischen einer Amplitude a der Erregung und einer erfassten Amplitude \hat{x} der Bewegung des Fahrzeuggrads (2) bzw. der Aufstandsplatte (7) im Resonanzfall ermittelt wird.

4. Verfahren nach Anspruch 2 oder 3, wobei die Erregung des Fahrzeuggrads (2) über ein elastisches Element (3) erfolgt und die Dämpfungskonstante K unter Berücksichtigung der schwingenden Masse m_1, insbesondere der Masse m_1 der Aufstandsplatte (7), der Federkonzentrate D, des elastischen Elements (3) ermittelt wird.

5. Verfahren nach zumindest einem der Ansprüche 1 bis 4, wobei das Lehr'sche Dämpfungsmaß δ unter Berücksichtigung einer anteiligen Fahrzeugmasse m_4, die auf den Schwingungsdämpfer (1) wirkt, ermittelt wird.

6. Verfahren nach Anspruch 5, mit einem Schritt zur Ermittlung der anteiligen Fahrzeugmasse m_4 basierend auf der Messung einer Absenkung s der nicht erregten Aufstandsplatte (7) durch die Belastung mit der anteiligen Fahrzeugmasse m_4.

7. Verfahren nach einem der Ansprüche 5 oder 6, wobei das Lehr'sche Dämpfungsmaß δ unter Berücksichtigung einer Resonanzfrequenz ω_0 des Fahrzeugaufbaus bestimmt wird.

8. Verfahren nach Anspruch 7, wobei Resonanzfrequenzen ω_0 für Schwingungen des Fahrzeugaufbaus für unterschiedliche Fahrzeugkategorien bestimmt, gespeichert und zur Ermittlung des Lehr'schen Dämpfungsmaßes δ verwendet werden.

10. Verfahren nach zumindest einem der Ansprüche 1 bis 9, mit einem Kompensationsschritt zum Kom-
pensieren des ermittelten Wertes für die Dämpfungskonstante K unter Berücksichtigung einer Dämpfung, mit
der eine Prüfvorrichtung Schwingungen der Aufstandsplatte (7) dämpft.

11. Verfahren nach Anspruch 10, mit einem Schritt zur Ermittlung der Dämpfungskonstanten Kp der Prüf-
vorrichtung durch Erfassung der Amplitudenwerte der abklingenden Schwingung der unbelasteten Aufstands-
platte (7) nach dem Abschluss der Erregung, insbesondere mittels des logarithmischen Dekrementes von er-
fassten Schwingungsamplituden.

12. Vorrichtung zum Bestimmen eines Dämpfungsmass für Schwingungen von Fahrzeugen, mit
Erregungsmitteln zum Erregen eines mit einem Schwingungsdämpfer (1) verbundenen Fahrzeuggrads (2),
Erfassungsmitteln (5) zum Erfassen der Bewegung des erregten Fahrzeuggrads (2),
ersten Berechnungsmitteln (10) zum Ermitteln einer Dämpfungskonstante K des Schwingungsdämpfers (1)
anhand der erfassten Bewegung des Fahrzeuggrads (2), und
zweiten Berechnungsmitteln (11) zum Ermitteln des Dämpfungsmass für die Bedämpfung einer Schwingung
der Fahrzeugkarosserie durch den Schwingungsdämpfer (1) anhand der ermittelten Dämpfungskonstante K
des Schwingungsdämpfers (1).

13. Vorrichtung nach Anspruch 12, mit einer Aufstandsplatte (7), auf der das Fahrzeuggrad (2) aufsteht, und
einer Antriebsseinheit (4), die über ein elastisches Element (3) mit der Aufstandsplatte (7) verbunden ist und
diese periodisch erregt.

14. Vorrichtung nach Anspruch 13, wobei die Erfassungsmittel (5) eine Amplitude \(\hat{x} \) der Bewegung der Auf
standsplatte (7) erfassen und anhand der erfassten Bewegung der Aufstandsplatte (7) die Bewegung des er-
regten Fahrzeuggrads (2) ermitteln.

15. Vorrichtung nach einem der Ansprüche 12 bis 14, wobei die ersten Berechnungsmittel (10) die Dämp-
fungskonstante K anhand des Verhältnisses zwischen einer Erregungsamplitude \(r \) der Antriebsseinheit (4)
der erfassten Amplitude \(\hat{x} \) der Bewegung des Fahrzeuggrads (2) bzw. der Aufstandsplatte (7) im Resonanzfall
er mitteln.

16. Vorrichtung nach zumindest einem der Ansprüche 12 bis 15, wobei die ersten Berechnungsmittel (10)
die Dämpfungskonstante K unter Berücksichtigung der schwingenden Masse \(m \), insbesondere der Masse \(m \),
der Aufstandsplatte (7), und der Federkonstanten \(D \), des elastischen Elements (3) ermitteln.

17. Vorrichtung nach zumindest einem der Ansprüche 12 bis 16, mit Fahrzeugmassebestimmungsmitteln
(16) zum Ermitteln der anteiligen Fahrzeugmasse \(m_a \), mit welcher der Schwingungsdämpfer (1) durch das
Fahrzeuggewicht belastet wird.

18. Vorrichtung nach Anspruch 17, wobei die Aufstandsplatte (7) über ein weiteres elastisches Element (6)
abgestützt ist, die Erfassungsmittel (5) eine Absenkung \(s \) der Aufstandsplatte (7) durch die Belastung mit der
anteiligen Fahrzeugmasse \(m_a \) erfassen, und die Fahrzeugmassebestimmungsmittel (16) die anteilige Fahr-
zeugmasse \(m_a \) unter Berücksichtigung der Federkonstanten \(D_a \) des weiteren elastischen Elements (6) ermit-
teln.

19. Vorrichtung nach zumindest einem der Ansprüche 12 bis 18, mit Beurteilungsmitteln (17) zum Beurtei-
len der Dämpfungseigenschaften des Schwingungsdämpfers (1), indem das ermittelte Dämpfungsmass mit ei-
 nem Grenzwert G verglichen wird.

20. Vorrichtung nach zumindest einem der Ansprüche 12 bis 19, wobei die ersten Berechnungsmittel (10)
eine Kompensationsvorrichtung zum Kompensieren des ermittelten Wertes für die Dämpfungskonstante K des
Schwingungsdämpfers (1) mit einer Schwingungsdämpfung \(K_p \) der Vorrichtung aufweist.

21. Vorrichtung nach zumindest einem der Ansprüche 17 bis 20, wobei die Fahrzeugmassebestimmung-
mittel (16) die anteilige Fahrzeugmasse \(m_a \) anhand des halben zulässigen Achsgewichts des Fahrzeugs und
eines Korrekturfaktors bestimmen.

Es folgen 6 Blatt Zeichnungen
Fig. 1
Fig. 2
Fig. 3

Fig. 4
Fig. 5

Fig. 6
Fig. 7

Fig. 8
Beginn

100 Ermittle anteilige Fahrzeugmasse m₄

110 Errege Aufstandsplatte

120 Erfasse Bewegung der Aufstandsplatte

130 Bestimme Dämpfungskonstante K

140 Kompensiere Prüfstandsverluste

150 Bestimme Dämpfungsmaß ν

160 Nein ν < G

170 Dämpfer defekt

180 Dämpfer in Ordnung

Ja

Ende

Fig. 9