Offenlegungsschrift

Aktenzeichen: 10 2004 051 389.9
Anmeldetag: 21.10.2004
Offenlegungstag: 04.05.2006

Anmelder: Heinz Soyer Bolzenschweißtechnik GmbH, 82237 Wörthsee, DE

Vertreter: Mitscherlich & Partner, Patent- und Rechtsanwälte, 80331 München

Erfinder: Reiter, Thomas, Dr., 85256 Vierkirchen, DE; Dibiasi, Lino, 82110 Germering, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:
- DE 102 21 387 C1
- DE 101 57 183 C1
- DE 101 43 220 C1
- DE 199 25 628 A1
- DE 36 31 598 A1
- DE 34 38 043 A1
- DIN EN ISO 14555, Dez. 1998, Beuth Verlag Berlin;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen
Prüfungsantrag gemäß § 44 PatG ist gestellt.

Verfahren und System zum Verschweißen eines eine kegelartige Stirnfläche aufweisenden Bolzens mit einem Träger

Zusammenfassung: Bei einem Verfahren zum Verschweißen eines eine kegelartige Stirnfläche (1a) aufweisenden Bolzens (1) mit einem Träger (5), wird zur Erzeugung eines Lichtbogens (10) zwischen dem Bolzen (1) zunächst im wesentlichen senkrecht zu der Oberfläche des Trägers (5) angesetzt und anschließend um ein bestimmtes Abhubmaß von der Trägeroberfläche abgezogen, wobei zumindest nach der Zündung des Lichtbogens (10) dieser einem Quermagnetfeld (8) ausgesetzt wird. Erfindungsgemäß weist die Stirnfläche (1a) des Bolzens (1) eine Neigung (α) von 4° ± 2,5° auf und das Abhubmaß beträgt 1 bis 2,5 mm.
Beschreibung

Stand der Technik

[0004] Das normale Bolzenschweißen für Hubzündungsbolzen wird mit Schweißzeiten im Bereich von 100 bis 3.000 ms eingesetzt, wobei hierbei Bolzen mit einer Dicke von 3 bis 25 mm verschweißt werden können. Die kegelartig ausgestaltete Bolzenspitze weist in diesem Fall gemäß der EN ISO 13918 eine Neigung von 22.5° ± 5° auf.

[0005] Bei diesem konventionellen Hubzündungsschweißen werden Ströme im Bereich zwischen 200 und 3.000 A eingesetzt, wobei die dabei erzielbaren Stromdichten lediglich einen Lichtbogen mit einem begrenzten Querschnitt ausbilden können. Um bei diesem Verfahren ein gleichmäßiges Anschmelzen der Querschnittsfäche des Bolzens sicherzustellen, ist demzufolge die verhältnismäßig hohe Neigung der Oberfläche der Bolzenspitze erforderlich, durch die sichergestellt wird, dass der Lichtbogen im Zentrum des Bolzens zündet. Auf dieser Schmelz- oder am Rand davon allerdings bewegt sich dann der Lichtbogen ungestört bzw. unkontrolliert weiter, wobei durch dessen Energieeintrag weiter außen liegende Bolzenbereiche ebenfalls ange- schmolzen werden. Geschmolzenes Material sammelt sich dann im Zentrum des Bolzens an, was zu Tropfenübergängen mit oder ohne Kurzschluß führen kann.

[0006] Bolzen und Grundmaterial werden bei diesem Verfahren mechanisch gefügt, wodurch mehr Schmelzmaterial anfällt, als für eine Verbindung eignetlich benötigt würde. Dieses überflüssige Material wird deshalb bis zu seiner Erstarrung über Keramikringe fixiert, die dann anschließend in einem separaten Arbeitsschritt entfernt werden müssen.

[0007] Beim Kurzzeitbolzenschweißen unter Schutzgas liegen im Vergleich zu dem zuvor diskutierten Verfahren Schweißzeiten von weniger als 100 ms vor. Mit diesem Verfahren können Bolzen von 8 bis 12 mm Dicke verschweißt werden, wobei die Bolzenspitze nunmehr eine Neigung von 7° ± 1° aufweist.

[0008] Aufgrund der geringeren Bolzenneigung muß zwar im Vergleich zum konventionellen Hubzündungsschweißen weniger Bolzenmaterial abgeschmolzen werden, auch hier besteht allerdings die Gefahr, dass sich der Lichtbogen unkontrolliert an der Schmelze entlang bewegt und sich das flüssige Material wiederum im Zentrum des Bolzens ansammelt, was zu unkontrollierten Tropfen und Übergängen sowie eventuellen Kurzschlußbildungen führen kann. Problematisch ist ferner, dass dieses Verfahren besonders anfällig für die sog. Blaswirkung ist, die zu einer einseitigen Verdrängung des Lichtbogens in Richtung des Bolzenrands und dementsprechend zu unzureichenden Schweißergebnissen führen kann.

[0011] Nachteilig bei diesem Verfahren ist, dass im Vorfeld die Schweißenergie gespeichert werden muß, weshalb nur recht kurze Schweißzeiten umsetzbar sind. Das bekannte Verfahren bietet zwar gewisse Vorteile beim Verschweißen von Bolzen auf dünnen Flächen, bei einem dicken Trägermaterial ist die Wärmeableitung im Grundmaterial allerdings der-
art hoch, dass der Träger vor dem Fügeprozess nicht mehr ausreichend angeschmolzen werden kann. Desweiteren ist dieses Verfahren gegen äußere Einflüsse wie z.B. Oberflächenverschmutzungen des Grundmaterials sehr empfindlich, weshalb größere Bolzen auch mit größeren Schweißströmen nicht ge-

schweißt werden können.

[0012] Das ebenfalls erwähnte Schweißen mit be-
wegtem Lichtbogen (MBL-Schweißen) beruht darauf,

dass der Lichtbogen während des Schweißvorgangs
ges einen Quermagnetfeld ausgesetzt wird, welches
den Lichtbogen seitlich ablenkt und hierdurch in eine
kreisförmige Bewegung versetzt. Dementsprechend

wurde dieses Verfahren bislang überwiegend zum

Verschweißen ringförmiger Werkstücke eingesetzt,

was beispielsweise in den beiden Veröffentlichungen
DE 101 43 220 C1 und DE 102 21 387 C1 der Anmel-
derin beschrieben ist.

[0013] Zwar ist aus den beiden Offenlegungschrift-
ten DE 34 38 043 A1 und DE 36 31 598 A1 bereits der

Gedanke bekannt, auch bei Bolzen aus Vollmaterial
ein Quermagnetfeld im Bereich der Schweißstelle zu

erzeugen, dies erfolgt allerdings dazu, die magneti-
sche Biaswirkung des Lichtbogens zu verringern.

Darüber hinaus hat sich gezeigt, dass bei den bislang

verwendeten Bolzen aus Vollmaterial die Wirkung
der magnetischen Querfelds nur unzureichend ist,
da aufgrund der starken Neigung der Bolzenspitze
das durch den Lichtbogen abgeschmolzene Material
wiederum dazu neigt, sich an der Spitze des Bolzens
anzusammeln und einen Kurzschluß zwischen dem

Bolzen und dem Träger zu erzeugen.

[0014] Ein allgemeines Problem der bekannten

Schweißverfahren, die auch ein Verschweißen dicke-
rer Bolzen aus Vollmaterial ermöglichen, besteht also
darin, dass die Bolzen eine kegelartige Stirnfläche
mit einer verhältnismäßig starken Neigung aufweisen
müssen, um ein möglichst gleichmäßig angeheiltes
Material durch den Lichtbogen sicherzustellen. Hieraus
ergibt sich jedoch das Problem, dass auch relativ viel

Material abgeschmolzen werden muss, um eine flä-

chige Verbindung zwischen dem Bolzen und dem

Träger zu erzielen, was wiederum in langen

Schweißzeiten, einem hohen Energieaufwand und
dementsprechend auch in einer hohen thermischen
Belastung für den Träger resultiert. Weitere Schwie-

rigkeiten bestehen ferner darin, dass aufgrund der
großen Menge des abzuschmelzenden Bolzenmate-
rials dieses seitlich von der Schweißstelle austreten
cann, wodurch die Qualität der Schweißung beein-

trächtigt wird. Um das seitliche Austreten des Matri-

eals zumindest teilweise zu unterbinden, werden dem-

tentsprechend Keramikringe oder -hülsen eingesetzt,

die nach der Beendigung des Schweißvorgangs in ei-

nen separaten Arbeitsschritt wieder entfernt werden

müssen. Problematisch ist schließlich auch, dass die

in den oben beschriebenen Verfahren zum Einsatz

kommenden Bolzen nur sehr aufwendig und damit

kostenintensiv herzustellen sind und darüber hinaus

auch keine Möglichkeit besteht, den Schweißkopf au-

tomatisiert mit Bolzen zu bestücken.

Aufgabenstellung

[0015] Der vorliegenden Erfindung liegt dement-
sprechend die Aufgabe zugrunde, eine Möglichkeit
anzugeben, einen Bolzen mit einer kegelartigen

Stirnfläche mit einem Träger zu verschweißen, wobei

die bei den bislang bekannten Verfahren bestehen-
den Nachteile vermieden werden sollen.

[0016] Die Aufgabe wird durch ein Verfahren mit

den Merkmalen des Anspruchs 1 sowie durch ein

System gemäß Anspruch 13 gelöst. Vorteilhafter Wei-

terbildungen der Erfindung sind Gegenstand der Un-

teransprüche.

[0017] Kerngedanke der vorliegenden Erfindung ist

es, die Vorteile des Kurzzeitbolzenschweißens mit
den Vorteilen des Kondensatorentladungsschwei-

ßens und des MBL-Schweißens zu verbinden, was
t zu einem Verfahren führt, das hervorragende

Schweißergebnisse liefert und gleichzeitig außerord-

tentlich wirtschaftlich ist.

[0018] Gemäß einem ersten Aspekt der vorliegen-
den Erfindung wird dementsprechend ein Verfahren
zum Verschweißen eines eine kegelartige Stirnfläche
aufweisenden Bolzens mit einem Träger vorgeschla-
gen, bei dem zur Erzeugung eines Lichtbogens zwi-

schen dem Bolzen und dem Träger der Bolzen zu-

ächst im wesentlichen senkrecht zu der Oberfläche

der Träger angesetzt und anschließend um ein be-

stimmtes Abhubmaß von der Trägeroberfläche abge-

zogen wird, wobei zumindest nach der Zündung des

Lichtbogens dieser einem Quermagnetfeld ausge-

setzt wird. Erfindungsgemäß weist die Stirnfläche

der Bolzens eine Neigung von 4° ± 2,5° auf und das

Abhubmaß beträgt 1 bis 2,5 mm.

[0019] Dieser Aspekt betrifft ferner ein System zum

Verschweißen eines Bolzens mit einem Träger, wo-

bei das System aus einer Schweißvorrichtung sowie

einem eine kegelartige Stirnfläche aufweisenden Bol-

zen besteht. Die Schweißvorrichtung weist Mittel

zum Anlegen eines Schweißstorns, eine Bolzenhal-

terung, welche dazu ausgebildet ist, zur Erzeugung

eines Lichtbogens zwischen dem Bolzen und dem

Träger den Bolzen zunächst im wesentlichen senk-

recht zu der Oberfläche des Trägers anzusetzen und

anschließend um ein bestimmtes Abhubmaß von der

Trägeroberfläche abzuziehen, sowie eine Magnet-

spule zur Erzeugung eines auf den Lichtbogen ein-

wirkenden Quermagnetfelds auf, wobei die Stirnflä-

che des Bolzens eine Neigung von 4° ± 2,5° aufweist

und das Abhubmaß 1 bis 2,5 mm beträgt.
Erfindungsgemäß wird also ebenso wie beim MBL-Schweißen ein Quermagnetfeld eingesetzt, welches eine Ablenkung des Lichtbogens nach dessen Zündung bewirkt. Die Funktion des Quermagnetics wird nunmehr allerdings aufgrund der Tatsache, dass der Bolzen lediglich eine Neigung im Bereich von $4^\circ \pm 2,5^\circ$ aufweist und das Abhängmaß im Bereich zwischen 1 und 2,5 mm liegt, optimiert. Wie nämlich später noch ausführlicher erläutert wird, kann durch diese besondere Kombination der Verfahrensparameter erreicht werden, dass der Lichtbogen die Stirnfläche des Bolzens im Rahmen einer spiralförmigen Bewegung gleichmäßig überstreicht und dementsprechend über die gesamte Kontaktfläche hinweg eine gleichmäßige Schweißverbindung zwischen dem Bolzen und dem Träger entsteht. Gleichzeitig sind die Parameter allerdings auch derart gewählt, dass das Ansammlen größerer Tropfenmengen an Schmelzmaterial, welches zu einem möglichen Kurzschluß zwischen dem Bolzen und der Trägeroberfläche führen könnte, vermieden wird. Diese für die Erzeugung einer gleichmäßigen Schweißverbindung unerlässliche Eigenschaft ergibt sich daraus, dass bei dem erfindungsgemäßen Verfahren ein gleichmäßigiges Abschmelzen der Bolzenstirnfläche sichergestellt ist und dementsprechend auch ausschließlich das für die Verbindung beider Flächen erforderliche Schweißmaterial abgeschmolzen wird. Dies wiederum bedeutet, dass das notwendige Schmelzmaterial zum Erzielen einer qualitativ hochwertigen Schweißverbindung und dementsprechend auch der erforderlichen Energieaufwand minimiert wird. Infolge vielfältig ergibt sich der weitere Vorteil, dass nunmehr erstmalig auch die Möglichkeit besteht, dickere Bolzen aus Vollmaterial auf verhältnismäßig dünne Träger aufzuschweißen, da für die Träger die thermische Belastung im Vergleich zu bislang bekannten Verfahren deutlich niedriger ist.

Flansch nunmehr erstmalig die Möglichkeit eröffnet, ohne größeren Aufwand die Bolzen automatisiert dem Schweißkopf einer Schweißvorrichtung zuzuführen. Der Flansch ermöglicht hierbei eine einfache Handhabung der Bolzen und insbesondere auch die erforderliche Ausrichtung dieser während der Zuführung. Im Vergleich zu den bisherigen Schweißverfahren, bei denen speziell ausgebildete Bolzen zum Einsatz kommen, bringt das erfindungsgemäße Verfahren somit auch wirtschaftliche Vorteile mit sich, da für einen Nutzer der Schweißvorrichtung die Handhabung des Systems deutlich vereinfacht wird. Insbesondere können nunmehr sehr einfache Rütter und Zuführungsverrichtungen zum automatisieren Zuführen der Bolzen eingesetzt werden.

Ein weiterer Vorteil im Hinblick auf die Wirtschaftlichkeit des erfindungsgemäßen Verfahrens besteht schließlich auch darin, dass die zum Einsatz kommenden Bolzen einfacher und kostengünstiger, insbesondere im Rahmen eines Preßvorganges hergestellt werden können. Demgegenüber mußten die bei den herkömmlichen Verfahren eingesetzten Bolzen in teilweise sehr aufwendigen Verfahren hergestellt werden, was in deutlich höheren Herstellungskosten resultierte.

Durch Weiterbildungen des erfindungsgemäßen Verfahrens kann dieses im Hinblick auf seine Qualität und Effektivität weiter optimiert werden. So kann beispielsweise vorgesehen sein, während des Schweißvorgangs ein Schutzgas zu der Schweißstelle zu befördern. Gemäß einem besonders vorteilhaften Ausführungsbeispiel der vorliegenden Erfindung ist hierbei vorgesehen, dass eine zur Erzeugung des Quermagnetfelds verwendete Spule gleichzeitig auch zur Ummantelung der Schweißstelle und zur Zuführung des Schutzgases genutzt wird.

Insgesamt gesehen wird somit ein sehr effektives Verfahren zum Verschweißen eines Bolzens mit einem Träger angegeben, welches sowohl im Hinblick auf die Durchführbarkeit des Verfahrens als auch auf die Qualität der erzielten Schweißverbindung deutliche Vorteile mit sich bringt. Zu erwähnen ist ferner, dass das erfindungsgemäße Verfahren mit allen denkbaren Materialien durchgeführt werden kann.

Ausführungsbeispiel

Nachfolgend soll die Erfindung anhand der beiliegenden Zeichnungen näher erläutert werden. Es zeigen:

[Fig. 1] schematisch die Anordnung eines Schweißkopfes zur Durchführung des erfindungsgemäßen Verfahrens zum Verschweißen eines Bolzens mit einem Träger;
[0028] Fig. 2 die Ausgestaltung eines bei dem erfindungsgemäßen Verfahrens zum Einsatz kommenden Bolzens und

[0029] Fig. 3a–Fig. 3e die einzelnen Schritte der erfindungsgemäßen Bolzenschweißverfahren.

[0031] Nachfolgend sollen nunmehr die erfindungsgemäßen Verfahren erläutert werden, bei denen die oben genannten Voraussetzungen für eine gute Bolzenschweißung erfüllt sind und welches gleichzeitig auch sehr wirtschaftlich ist.

[0032] Fig. 1 zeigt hierzu zunächst im Querschnitt die Anordnung eines allgemein mit dem Bezugszahlen 20 versehenen Schweißkopfes, der zum Verschweifen eines Bolzens 1 mit einem Träger 5 bzw. allgemein einem Grundwerkstoff vorgesehen ist.

[0034] Um die vorbeschriebene Hubzündung durchführen zu können, weist der Schweißkopf 20 demzufolge einen entsprechenden Bolzenhalter 2 auf, der den Bolzen 1 während des Schweißvorgangs hält und die erforderlichen Hub- und Absenkbewegungen durchführt. Nach Beendigung der Schweißung wird der auf den Träger 3 aufgeschweißte Bolzen 1 abge- stoßen, was mit Hilfe eines sich im Zentrum des Bolzenhalters 2 befindlichen Stößels 3 erzielt wird.

[0036] Die letzte wesentliche Komponente des Schweißkopfes 20 ist schließlich eine von Gleichstrom durchflossene ringförmige Spule 6, welche das innere Schutzgasrohr 4 umgibt und zur Erzeugung eines Magnetfelds 8 vorgesehen ist. Die Feldlinien dieses Magnetfelds 8 sind in Fig. 1 ebenfalls dargestellt, wobei der Anordnung der magnetisierenden Elemente derart angepasst, dass das Magnetfeld 8 darin eingezeichnet wird, dass das Magnetfeld 8 derart ausgestaltet ist, dass die in der Breite der Schweißstelle im Wesentlichen eine Querkomponente erzielt wird. Wie später noch näher erläutert wird, wird mithilfe des Magnetfelds 8 dann der Lichtbogen während des Schweißvorganges abgeleitet, um in erfindungsgemäßer Weise die Stirnflächen des Bolzens 1 gleichmäßig überzubreiten. Die rotationssymmetrische Ausgestaltung des Magnetfelds 8 wird insbesondere auch noch durch einen die Spule 6 umgebenden äußeren Feldkonzentrator 7 erzielt, der den geeigneten Verlauf der Feldlinien des Magnetfelds 8 sicherstellt.

[0037] Bevor das erfindungsgemäße Verfahren detailliert beschrieben wird, soll zunächst noch auf die besondere Ausgestaltung des Bolzens 1 näher eingegangen werden. Entsprechend der Darstellung in Fig. 2 weist dieser zunächst ebenso wie die bislang verwendeten Bolzen eine im wesentlichen kegelartige Stirnfläche 1a auf. Im Vergleich zu den bekannten Bolzen unterscheidet sich allerdings der erfindungsgemäß verwendete Bolzen 1 durch zwei Merkmale, nämlich zum einen durch die Verwendung eines Außenflansches 1b sowie zum anderen durch die sehr geringe Bolzenneigung.

[0038] Für das erfindungsgemäße Schweißverfahren ist zunächst die geringe Neigung der Stirnfläche 1a des Bolzens 1 von Bedeutung. Entsprechend der Darstellung in Fig. 2 nimmt die Oberfläche im Vergleich zu einer senkrecht zur Längsachse I des Bol-
zens 1 angedeutenen Ebene II einen Winkel α ein, der erfindungsgemäß $4^\circ \pm 2,5^\circ$ beträgt, also im Bereich zwischen 1,5° und 6,5° liegt. Wie später noch anhand der Fig. 3a bis Fig. 3e erläutert wird, können durch diese besonders niedrige Bolzenneigung gleichzeitig mehrere Vorteile erzielt werden, welche einerseits zu einem sehr wirtschaftlichen Schweißverfahren führen und andererseits eine hohe Güte der Schweißverbindung sicherstellen.

[0039] Das zweite besondere Merkmal des erfindungsgemäßen Bolzens 1 ist wie gesagt ein am Außenrand der Stirnfläche 1a befindlicher Flansch 1b. Dieser trägt zwar nicht unmittelbar zur Verbesserung der Schweißverbindung bei, er bringt allerdings den Vorteil mit sich, dass hierdurch der Bolzen 1 leichter gehandhabt werden kann. Insbesondere ermöglicht dieser Außenflansch 1b eine automatisierte Handhabung durch Zuführungsvorrichtungen, welche ein automatisches Bestücken des Schweißkopfes 20 mit den Bolzen 1 ermöglichen. Der Flansch 1b wird hierbei dazu verwendet, den Bolzen 1 lagerichtig zu orientieren und dem Schweißkopf 20 zuzuführen. Die erfindungsgemäße Schweißvorrichtung kann dementsprechend durch eine automatische Zuführungsvorrichtung erweitert werden, welche den Schweißkopf 20 automatisch mit neuen Bolzen 1 bestückt.

[0040] Anzumerken ist ferner, dass die besondere Gestalt des Bolzens 1, der insbesondere einen Durchmesser von 6 – 20 mm aufweisen kann, auch dazu beiträgt, dass dieser in einfacher und effektiver Weise, beispielsweise im Rahmen eines Prüfzweckes hergestellt werden kann. Derartige Herstellungsmöglichkeiten sind deutlich günstiger als die Spezialverfahren, mit denen die speziell ausgestalteten Schweißbolzen bislang hergestellt werden mußten.

[0041] Mit dem erfindungsgemäß ausgestalteten Schweißkopf 20 sowie dem Bolzen 1 kann nunmehr also eine Schweißung durchgeführt werden, wie sie in den Fig. 3a-Fig. 3e dargestellt ist. Die fünf Darstellungen zeigen dabei die einzelnen Schritte des erfindungsgemäßen Schweißverfahrens, wobei insbesondere auch die Position des Lichtbogens bzw. dessen Bewegung dargestellt ist.

[0042] Wie bereits zuvor erwähnt wurde, beruht das erfindungsgemäße Verfahren zunächst auf dem Prinzip der sogenannten Hubzündung. Hierbei wird der Bolzen 1 in einem ersten Schritt mit Hilfe des Bolzenhalters 2 im wesentlichen senkrecht zu der Oberfläche des Trägers 5 an diesen angesetzt und nach Anlegen des Schweißstroms, der je nach Dicke des Bolzens im Bereich zwischen 400 A und 1.200 A liegt, um ein vorgegebenes Abhubsmaß angehoben, wie dies in Fig. 3d dargestellt ist. Das erfindungsgemäße Verfahren wird bei einem minimalen Abhubsmaß durchgeführt, so dass sich eine Spaltbreite zwischen der Bolzenstirnfläche und der Oberfläche des Trägers 5 ergibt, die je nach Durchmesser des Bolzens im Bereich zwischen 1 und 2,5 mm liegt.

[0043] Wird also der Bolzen 1 von der Oberfläche des Trägers 5 abgezogen, so zündet entsprechend der Darstellung in Fig. 3b ein Pilotlichtbogen 10, der aufgrund der kerzengestützten Ausgestaltung der Stirnfläche des Bolzens 1 sich zunächst im Zentrum des Bolzens 1 befindet. In diesem Stadium entsteht sowohl an der Spitze des Bolzens 1 als auch an der gegenüberliegenden Basis des Schweißspals eine flüssige Schmelzbadlinse 12 bzw. 12. Zeitgleich mit dem Abhub des Bolzens 1 wird ferner auch der Stromfluß durch die Spule 6 zugeschal tet, um das Quermagnetfeld 8 zu erzeugen.

[0044] Die Ansatzbedingungen des Lichtbogens 10 sind am Rand dieser flüssigen Schmelze 11, 12 günstiger als im Bereich ohne flüssige Schmelze, weshalb sich der Lichtbogen 10 im wesentlichen am Randbereich dieser Schmelzbadlinse 11, 12 anordnen wird. Aufgrund des durch die Spule 6 hervorgerufenen Quermagnetfelds wird allerdings der Lichtbogen 10 seitlich abgenkenkt, was zur Folge hat, dass dieser sich kreisförmig am Rand der Schmelzzone entlangbewegt. Da allerdings der Lichtbogen 10 permanent thermische Energie auf den Bolzen 1 bzw. das Trägermaterial 5 überträgt, wird sich der Durchmesser dieser Schmelzlinse 11, 12 permanent ausdehnen. Dies führt letztendlich entsprechend den Darstellungen in den Fig. 3c und Fig. 3d dazu, dass der Lichtbogen 10 eine kreisförmige Bewegung durchführt, wobei allerdings der Durchmesser des Kreises permanent ansteigt. Letztendlich bedeutet dies, dass der Lichtbogen 10 spiralförmig die Stirnfläche des Bolzens 1 bzw. den gegenüberliegenden Bereich der Trägeroberfläche überstreicht, bis schließlich nach ca. 80 Umläufen (wobei die Anzahl der Umläufe selbstverständlich auch von der Dicke des Bolzens abhängt) des Lichtbogens 10 gemäß der Darstellung in Fig. 3d der gesamte Fügebereich der Bolzenstirnfläche bzw. des Grundmaterials ange schmolzen wurde. Zu diesem Zeitpunkt wird der Schweißvorgang beendet und entsprechend der Darstellung in Fig. 3e der Fügevorgang eingeleitet. Der Bolzen 1 wird hierbei auf die gegenüberliegende Fläche des Trägers 5 gepresst und mit diesem verbunden.

[0045] Wesentlich ist, dass die Vergrößerung der Schmelzbadoberfläche während der spiraligen Bewegung des Lichtbogens 10 auch zu einer größeren Oberflächenflächen fraktionierung der Schmelze führt, was wiederum die Bildung von größeren Tropfen verhindert, die eventuell zu einem Kurzschluß führen könnten. Gleichzeitig erfolgt durch den geringen Spalt zwischen der Bolzenstirnfläche und dem Träger 5 ein thermischer Ausgleich zwischen Bolzenfläche und Grundmaterial, durch welchen der Prozess thermisch stabilisiert wird. Hierdurch ergibt sich auch der Vor-
teil, dass die zum Abschmelzen des Bolzen- und Trägermaterials erforderliche Leistung weiter reduziert wird und dementsprechend ein niedrigerer Energieaufwand erforderlich ist. Ein weiterer Vorteil besteht darin, dass der Lichtbogen in diesem Fall gemeinsam mit dem Magnetfeld zur Stabilisierung der Schmelzbadoberfläche beiträgt, was insbesondere in solchen Fällen eine Rolle spielt, in denen in Zwangslagen, also beispielsweise gegen eine vertikale Grundfläche bzw. Wand oder überkopf geschweißt werden muß. Das erfindungsgemäße Verfahren eignet sich daher auch zum maschinellen Einsatz.

[0046] Entsprechend der obigen Beschreibung ist der Schweißprozess also derart gestaltet, dass ein minimaler Schweißspalt verwendet wird und der Prozess ohne Tropfenkurschluß abläuft. Durch die spiralförmige Bewegung des Lichtbogens vom Zentrum in den Außenbereich am Rand des Schmelzbaudes wird eine große Fläche am Bolzen gleichmäßig angeschmolzen, die das flüssige Material durch ihre Oberflächenspannung aufsaugt und so örtliche Kurzschlüsse vermeidet. Durch die gesteuerte Bewegung des Lichtbogens auf der gesamten Bolzenoberfläche kann ferner das Verfahren mit deutlich geringen Strömen und Stromdichten betrieben werden, als dies bislang der Fall war. Im Vergleich zum Kurzzeitbolzenschweißen kann gemäß der vorliegenden Erfindung beispielsweise ein Bolzen mit einem Durchmesser von 12 mm anstatt mit 1.300 A bereits mit 800 A und trotz allem mit besserer Schweißqualität verschweißt werden. Es können also Schweißströme eingesetzt werden, die unterhalb der von der DIN ISO 14555 empfohlenen Werte liegen. Hierdurch sinkt auch der Investitionsaufwand für die zu verwendenden Stromquellen, was ebenfalls zur Verbesserung der Wirtschaftlichkeit des Verfahrens beiträgt. Im Gegensatz zum Kurzzeitlichtbogenschweißen ist ferner das Verfahren problemlos für Bolzen mit einer Dicke von bis zu 20 mm einsetzbar.

[0047] Festgestellt werden kann damit, dass das erfindungsgemäße Verfahren die Vorteile der drei oben genannten Verfahren kombiniert.

[0048] Der wesentliche Vorteil des Kondensatorentladungsschweißens, nämlich lediglich soviel Schmelze zu erzeugen, wie für die Verbindung zwischen Bolzen und Träger benötigt wird, kommt auch bei dem erfindungsgemäßen Verfahren zum Einsatz, was u.a. ein Resultat der sehr geringen Bolzenneigung ist. Gleichzeitig wird allerdings ein Anschmelzen des gesamten Bolzenquerschnitts für eine optimale Fugeverbindung bei geringem Spaltmaß erzielt.

[0049] Der wesentliche Vorteil der Hubbündung als robustes Verfahren mit ausreichendem Wärmeintrag in das Grundmaterial wird ebenfalls genutzt, wobei nunmehr auch der Einfluss der Oberflächenrauhigkeit oder geringfügiger Oberflächenverschmutzung reduziert wird.

** Patentansprüche **

1. Verfahren zum Verschweißen eines einer kegelartige Stirnfläche (1a) aufweisenden Bolzens (1) mit einem Träger (5), wobei zur Erzeugung eines Lichtbogens (10) zwischen dem Bolzen (1) und dem Träger (5) der Bolzen (1) zunächst im wesentlichen senkrecht zu der Oberfläche des Trägers (5) angesetzt und anschließend um ein bestimmtes Abhubsmaß von der Trägeroberfläche abgezogen wird, und wobei zumindest nach der Zündung des Lichtbogens (10) dieser einem Quermagnetfeld (8) ausgesetzt wird, dadurch gekennzeichnet, dass die Stirnfläche (1a) des Bolzens (1) eine Neigung (α) von 4° ± 2,5° aufweist und das Abhubsmaß 1 bis 2,5 mm beträgt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Bolzen (1) am Rand seiner Stirnfläche (1a) einen nach außen gerichteten Flansch (1b) aufweist.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass mehrere Bolzen (1) automatisiert zu einem die Bolzen (1) während des Schweißvorganges haltenden Bolzenhalter (1) nachgeführt werden.
4. Verfahren zum Verschweißen eines eine kegelartige Stirnfläche (1a) aufweisenden Bolzens (1) mit einem Träger (5), wobei zur Erzeugung eines Lichtbogens (10) zwischen dem Bolzen (1) und dem Träger (5) der Bolzen (1) zunächst im wesentlichen senkrecht zu der Oberfläche des Trägers (5) angesetzt und anschließend um ein bestimmtes Abhubmaß von der Trägeroberfläche abzuziehen, und wobei zumindest nach der Zündung des Lichtbogens (10) dieser einem Quermagnetfeld (8) ausgesetzt wird, dadurch gekennzeichnet, dass der Bolzen (1) am Rand seiner Stirnfläche (1a) einen nach außen gerichteten Flansch (1b) aufweist.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass mehrere Bolzen (1) automatisiert zu einem die Bolzen (1) während des Schweißvorganges haltenden Bolzenhalter (1) nachgeführt werden.

6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Stirnfläche (1a) des Bolzens (1) eine Neigung (α) von 4° ± 2,5° aufweist.

7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das Abhubmaß 1 bis 2,5 mm beträgt.

8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Bolzen (1) eine Dicke von ca. 6 bis 20 mm aufweist.

9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Schweißstrom im Bereich zwischen 400 und 1200 A angelegt wird.

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass eine zur Erzeugung des Quermagnetfelds (8) verwendete Spule (6) zur Ummantelung der Schweißstelle und Zuführung des Schutzgases genutzt wird.

12. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Bolzen (1) aus Stahl, Edelstahl oder Aluminium besteht.

13. System zum Verschweißen eines Bolzens (1) mit einem Träger (5), bestehend aus einer Schweißvorrichtung (20) sowie einer eine kegelartige Stirnfläche (1a) aufweisenden Bolzen (1), wobei die Schweißvorrichtung (20) aufweist: a) Mittel zum Anlegen eines Schweißstroms, b) einen Bolzenhalter (2), welcher dazu ausgebildet ist, zur Erzeugung eines Lichtbogens (10) zwischen dem Bolzen (1) und dem Träger (5) den Bolzen (1) zunächst im wesentlichen senkrecht zu der Oberfläche des Trägers (5) anzuzeigen und anschließend um ein bestimmtes Abhubmaß von der Trägeroberfläche abzuziehen, sowie c) eine Magnetspule (6) zur Erzeugung eines auf den Lichtbogen (10) einwirkenden Quermagnetfelds (8), dadurch gekennzeichnet, dass die Stirnfläche (1a) des Bolzens (1) eine Neigung (α) von 4° ± 2,5° aufweist und das Abhubmaß 1 bis 2,5 mm beträgt.

14. System nach Anspruch 13, dadurch gekennzeichnet, dass der Bolzen (1) am Rand seiner Stirnfläche (1a) einen nach außen gerichteten Flansch (1b) aufweist.

15. System nach Anspruch 13, dadurch gekennzeichnet, dass die Schweißvorrichtung (20) eine Vorrichtung zur automatisierten Zuführung von Bolzen (1) zu dem Bolzenhalter (2) aufweist.

16. System zum Verschweißen eines Bolzens (1) mit einem Träger (5), bestehend aus einer Schweißvorrichtung (20) sowie einer eine kegelartige Stirnfläche (1a) aufweisenden Bolzen (1), wobei die Schweißvorrichtung (20) aufweist: a) Mittel zum Anlegen eines Schweißstroms, b) einen Bolzenhalter (2), welcher dazu ausgebildet ist, zur Erzeugung eines Lichtbogens (10) zwischen dem Bolzen (1) und dem Träger (5) den Bolzen (1) zunächst im wesentlichen senkrecht zu der Oberfläche des Trägers (5) anzusetzen und anschließend um ein bestimmtes Abhubmaß von der Trägeroberfläche abzuziehen, sowie c) eine Magnetspule (6) zur Erzeugung eines auf den Lichtbogen (10) einwirkenden Quermagnetfelds (8), dadurch gekennzeichnet, dass der Bolzen (1) am Rand seiner Stirnfläche (1a) einen nach außen gerichteten Flansch (1b) aufweist.

17. System nach Anspruch 16, dadurch gekennzeichnet, dass die Schweißvorrichtung (20) eine Vorrichtung zur automatisierten Zuführung von Bolzen (1) zu dem Bolzenhalter (2) aufweist.

18. System nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Stirnfläche (1a) des Bolzens (1) eine Neigung (α) von 4° ± 2,5° aufweist.

19. System nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass das Abhubmaß 1 bis 2,5 mm beträgt.

20. Verfahren nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass der Bolzen (1) eine Dicke von ca. 6 bis 20 mm aufweist.

21. System nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, dass die Schweißvorrich-
tung (20) Mittel zum Zuführen eines Schutzgases zu der Schweißstelle aufweist.

Es folgen 3 Blatt Zeichnungen
Fig. 3e