Das Verfahren zur Behandlung von Regenwasser und Vorrichtung zur Durchführung des Verfahrens


Die erfindungsgemäße Vorrichtung ist derart ausgebildet, dass oberhalb der Sohle des Retentionsbeckens (3) eine Sedimentschicht (8) aufgebaut wird und unterhalb des Retentionsbeckens (3) eine Dränsschicht (9) mit für den dichten Schlüflbestand darunter liegender Wurzelraumschicht (12) angeordnet sind, wobei bei dem Retentionsbecken (3) Steuereinrichtungen zur Fällungsmittelzugabe vorgeschaltet und zur Ablaufkontrolle nachgeschaltet sind.
Beschreibung


Stand der Technik


[0012] Im Bereich des Regenabwasserabflusses für Trennsysteme sind großtechnisch realisierte Fällungs- und Flockungsverfahren nicht bekannt.


[0016] Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass bekannterweise das Regenwasser über einen Zuleitungskanal in einen integrierten Sandfang und anschließend in ein Retentionsbecken gelangt.


[0018] Bei der Sedimentfiltration wird durch die aufgebaute Sedimentationsschicht, die nach ungefähr zwei Betriebsjahren wirksam wird, das Regenwasser zusätzlich filtriert. Unterhalb des Retentionsbeckens ist eine Dränung angeordnet, die während der Be schickung kontinuierlich Wasser aufnimmt und aus dem System leitet.

[0019] Unterhalb dieser Dränung befindet sich die Wurzelraumschicht, in der ein minimaler Wassers tand zur Wasserversorgung des Schiffes auch während längerer Besichtigungszeiten gewährleistet wird. Die Wurzelraumschicht ist 0,3 m mächtig und besteht aus 70 % bis 90 % Schotter 16/32 und 10 % bis 30 % bindigem Material.

[0020] Der Vorteil besteht darin, dass durch die Wurzelraumschicht gute Wachstumsbedingungen und eine kontinuierliche Wasserversorgung des Schiffes gewährleistet werden.

[0021] Erfindungsgemäß werden bei einer zusätzlichen Fällmitteldosierung nicht nur die Feinpartikel, sondern auch gelöste Stoffe entfernt. Damit wird gelöster Phosphor in den Verfahrensschritten wirksam
eliminiert und die Bindeleistung der Sedimente erhöht.


[0027] Die Vorteile des erfindungsgemäßen Verfahrens und der dazugehörigen Vorrichtung bestehen darin, dass durch die gemeinsam ablaufernden Verfahren der Lamellensedimentation und Sedimentfiltration eine gezielte Nutzung der sich bildenden Sedimente als Schadstoffsenke für gelöste Stoffe, insbesondere Phosphor und Metalle, gewährleistet ist, die durch die Fällungsmittelzugabe noch verstärkt wird und somit ein Filtrationsmedium gegeben ist.


Ausführungsbeispiel


[0030] In Fig. 1 wird die Regenwasserbehandlung mit einer Sedimentation und Filtration

[0031] und in Fig. 2 wird die Regenwasserbehandlung mit einer Sedimentation, Filtration und Zugabe von Fällungsmitteln gezeigt.

[0032] Nach Fig. 1 gelangt das Regenwasser über einen Zuleitungskanal 1 in einen integrierten Sandfang 2, in dem die Grobstoffe und die Sandfraktion, beispielsweise Kies und Schotter, aus dem Abfluss entfernt werden. Anschließend wird es in ein Retentionsbecken 3 geführt.


[0035] Erreicht der Wasserstand im Retentionsbecken durch den einströmenden Regenwasserabfluss ein maximales Einstauziel 6, wird das Regenwasser über den Klärüberlauf 15 entlastet.

[0036] Durch die damit verbundene Hochleistungs-sedimentation wird ein Wirkungsgrad der Reinigung von Regenwasser von 70 % für die gewässerschutzrelevante Feinpartikel erreicht.

[0037] Innerhalb des Retentionsbeckens 3 befindet sich ein dichter Schifffeststand 7. Während der Durchströmung wird damit eine hochwirksame Partikelabscheidung in Form einer Lamellensedimentation gewährleistet. Bei größeren Ereignissen wird das gesamte Retentionsbecken 3 bis zum maximalen Einstauziel 6 von 4 m gefüllt.


[0039] Unterhalb des Retentionsbeckens 3 liegt eine Dränung 9. Während der Beschickung wird kontinuierlich Regenwasser aufgenommen und aus dem System abgeleitet. Die Ableitung erfolgt gedrosselt, vorzugsweise 0,03 l/m² × s über einen Dränablauf 10 und einen Drosselschieber des Dränabflaufs 11, um eine hohe Filtrationsleistung der Sediment-
schicht 8 zu erreichen. Gleichzeitig erfolgt nach der Entleerung des Retentionsbeckens 1, über die untenliegende Dränischicht 9, eine vollständige Entwässerung des Sedimentes.

[0040] Unterhalb dieser Dränischicht 9 ist eine Wurzelaumschicht 12 angeordnet, in der ein minimaler Wasserstand 13 eingestellt wird, um die Wassertemperaturen des Schiffes 7 auch während längerer Beschickungspansen zu gewährleisten. Die Wurzelaumschicht 12 ist vorzugsweise 0,3 m hoch und besteht aus 80 % vorzugsweise Schotter 16/32 und 20 % bindigem Material.


[0043] In Fig. 2 wird gezeigt, dass zuflossproportionale Fällungsmittel in dem mit Regenwasser gefüllten Zuleitungskanal 1 dosiert wird. Das Regenwasser wird über den Sandfang 2 zum Retentionsbecken 3 geführt.

[0044] Die Zuleitung wird durch die Installation einer Durchflussmessung 18, bei der die Durchflusssignale über eine Datenleitung 19 zu einer Steuerinheit 20, die eine Dosierpumpe 21 ansteuert geleitet, kontrolliert. Das Fällungsmittel, ungefähr 30 l, wird in einem Fällungsmittelpeicher 22 vorgehalten und über eine Dosiermittelteileitung 23 homogen in den Zufuss eingemischt. Bei einem gelösten Phosphorgehalt von 0,1 mg/l wird 0,50 mg/l Al³⁺ in Form von Polyaluminiumchlorid zugegeben.

[0045] Die zuflossproportionale Fällungsmittelzugaue erfolgt in einer Entfernung zur Behandlungsanlage, die einer Fließzeit von mehr als 2 min entspricht. Der Aufbau des Retentionsbeckens 3 und die damit verbundenen V erfahrensschritte verlaufen entsprechend dem Beispiel in der Fig. 1.

Bezugszeichenliste

1. Zuleitungskanal
2. Sandfang
3. Retentionsbecken
4. Sohlablau
5. Sohlablaufigen
6. maximales Einstauziel
7. Schiffbestand
8. Sedimentschicht
9. Dränischicht
10. Dränablauf
11. Drosselschieber des Dränablaufes
12. Wurzelaumschicht
13. minimaler Wasserstand
14. Dichthuschicht
15. Klärüberlauf
16. Ablaufkanal
17. Wasserstandsmessung
18. Durchflussmessung
19. Datenleitung
20. Steuereinheit
21. Dosierpumpe
22. Fällungsmittelpeicher
23. Dosiermittelteileitung

Patentansprüche


2. Verfahren nach dem Anspruch 1, dadurch gekennzeichnet, dass bei der Lamellsedimentation durch den vorhandenen dichten Schiffbestand (7) in dem Retentionsbecken (3) Partikel aus dem Regenwasser abgeschieden werden und eine Sedimentschicht (8) aufgebaut wird.

3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass bei der Sedimentfiltration durch die nach Ablauf von größer als zwei Jahren aufgebraute Sedimentschicht (8) das Regenwasser im Retentionsbecken (3) filtriert wird.


5. Verfahren nach dem Anspruch 1 bis 4, dadurch gekennzeichnet, dass Fällungsmittelzugaue zufloss-
proportional, vorzugsweise in einer Entfernung zu
dem Retentionsbecken (3), die einer Fließbreite von
größer als zwei Minuten entspricht, durchgeführt
wird.

6. Vorrichtung zur Durchführung des Verfahrens
bestehend aus einem Retentionsbecken (3) nach
den Ansprüchen 1 bis 5, dadurch gekennzeichnet,
dass oberhalb der Sohle des Retentionsbeckens (3)
eine Sedimentschicht (8) aufgebaut wird und unter-
halb des Retentionsbeckens (3) eine Dränenschicht (9)
mit für den dichten Schiffbestand darunter liegender
Wurzelaumschicht (12) angeordnet sind, wobei bei
dem Retentionsbecken (3) Steuereinrichtungen zur
Fällungsmittelzugabe vorgeschaltet und zur Ablauf-
kontrolle nachgeschaltet sind.

7. Vorrichtung nach dem Anspruch 6, dadurch
gekennzeichnet, dass die Steuereinrichtung zur Fäl-
lungsmittelzugabe aus einer Dosiermittelleitung (23),
einer Durchflussmessung (18), einer Datenleitung
(19), einer Steuereinheit (20), einer Dosierpumpe
(21) und einem Fällungsmittelspeicher (22) zum Vor-
halten des Fällungsmittels besteht.

8. Vorrichtung nach den Ansprüchen 6 und 7, da-
durch gekennzeichnet, dass für die Steuereinrich-
tung der Ablaufsysteme ein Klärüberlauf (15), eine
Wasserstandsmessung (17), einen Sohlablaufschie-
er (5) und einen Dränablauf (10), der zu einem Ab-
laufkanal (16) führt, angeordnet sind.

Es folgen 2 Blatt Zeichnungen