Offenlegungsschrift

Aktenzeichen: 10 2005 032 432.0
Anmeldetag: 12.07.2005
Offenlegungstag: 25.01.2007

Int Cl.¹ B65D 81/26 (2006.01)
B65D 65/40 (2006.01)
B65D 85/00 (2006.01)
B32B 3/24 (2006.01)
B32B 27/12 (2006.01)

Anmelder:
McAirlad's Vliesstoffe GmbH & Co. KG, 48565 Steinfurt, DE

Vertreter:
Christophersen & Partner, Patentanwälte, 40479 Düsseldorf

Erfinder:
Schmidt, Andreas, 37115 Duderstadt, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Bezeichnung: Saugeinlage für Lebensmittelverpackungen

Zusammenfassung: Die Erfindung betrifft eine Saugeinlage 1, insbesondere eine absorbierende Saugeinlage für Lebensmittelverpackungen aus einer oberen Abdecklage 2, einer unteren Abdecklage 3 sowie einer zwischen den Abdecklagen 2, 3 befindlichen Absorptionslage 7. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der Saugeinlage 1 sowie deren Verwendung als Laminat-Einlage für Lebensmittelverpackungen.


Zur Beseitigung u. a. dieser Probleme wird mit der Erfindung bei einer Saugeinlage der eingangs genannten Art vorgeschlagen, dass mindestens eine der beiden Abdecklagen 2, 3 eine Folie darstellt und eine dreidimensionale Struktur aufweist und für Flüssigkeit durchlässige Öffnungen 6 hat und dass die Saugeinlage 7 an ihren Außenkanten wenigstens teilweise verschlossen ist.

In Bezug auf das Verfahren zur Herstellung der Saugeinlage wird u. a. vorgeschlagen, dass eine Absorptionslage, die Saugeinlage aufweist, beidseitig mit Abdecklagen 2, 3 bedeckt wird, wobei die obere Abdecklage 2 aus einem wasserundurchlässigen Material besteht und eine dreidimensionale Struktur ...
Beschreibung


Stand der Technik


[0005] Die aus dem Stand der Technik bekannten Saugeinlagen zeigen vielfach den Nachteil, • dass die aus dem Frischfleisch austretende Flüssigkeit aufgrund ihrer Zusammensetzung mehr oder weniger schlecht absorbiert wird, • dass die Perforationsöffnungen in der Abdeckfolie sich durch den Fleischsaft sehr schnell verstopfen, • dass das Fleisch die Eintrittsöffnungen für den Fleischsaft bei glatter Oberfläche dicht abdeckt und somit ein Absorbieren stark behindert und/oder verhindert, • dass bedingt durch offene Schnittkanten keine superabsorbierenden Granulate eingesetzt werden können, • dass der Gewichtsdruck, den das Fleisch beim Auflegen auf der Einlage auf diese ausübt, dazu führt, dass an diesen aufliegenden Stellen mehr Flüssigkeit absorbiert wird (sogenannter Dochteffekt), als dies der Fall sein würde, wenn das Fleisch „drucks“ mit dem Saugekörper der Einlage in Kontakt wäre, so dass es leicht zum Austrocknen des Fleisches kommen kann.

Aufgabenstellung

[0006] Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, Saugeinlagen zur Verfügung zu stellen die üblichen Probleme lösen, die insbesondere als Einlagen für Lebensmittelverpackungen geeignet sind, welche aus Lebensmitteln wie Frischfleisch, Fisch, Geflügel, und Früchten austretende Flüssigkeiten absorbieren, so dass die Lebensmittel nicht in der austretenden Flüssigkeit liegen, dass aber auch vermieden wird, dass mehr als die ohne Gewichtsdruck austretende Flüssigkeit absorbiert wird, was zu einem Austrocknen des Lebensmittels führen würde. Aufgabe der vorliegenden Erfindung ist somit insbesondere eine Saugeinlage der eingangs genannten Art zur Verfügung zu stellen, welche Flüssigkeit unabhängig vom Gewichtsdruck der Ware absorbiert, die aber an den Punkten, auf denen das Lebensmittel bzw. das Fleisch direkt aufliegt, nur die selbstständig freiernde Flüssigkeit absorbiert. Ein aktives Entwässern des Fleisches soll konstruktiv verhindert, sowie die sichere Handhabung der superabsorbierenden Granulate konstruktiv gewährleistet werden.
[0007] Gegenstand der vorliegenden Erfindung ist
demgemäß eine Saugeinlage aus einer oberen Ab-
decklage und einer unteren Abdecklage sowie einer
zwischen den Abdecklagen angeordneten Absorpti-
onsilage, die dadurch gekennzeichnet ist, dass min-
destens eine der beiden Abdecklagen eine dreidi-
mensionale Struktur und für Flüssigkeit durchlässige
Öffnungen aufweist, und dass die Saugeinlage an ih-
nen Außenkanten wenigstens teilweise verschlossen
ist.

[0008] Die erfindungsgemäße Saugeinlage hat den
Vorteil, dass die auf dieser Einlage aufliegenden Le-
bensmittel vor allem auf Bereichen aufliegen und der-
art Gewichtsdruck ausüben, die in Richtung Lebens-
mittel bzw. auszulegendes Gut hervorrufen, die also
erhaben ausgestaltet sind. Die austretende Flüssigkeit
durch die durchlässigen Öffnungen in Richtung Absorptionslage eintreten und wird von
dieser dann erst absorbiert. Vorzugsweise wird die
Abdecklage derart ausgestellt, dass sie den Ge-
wichtsdruck des Fleisches ein Maximum an Stabilität
gegen Verformung entgegengesetzt.

[0009] In einer möglichen Ausführungsform der vor-
liegenden Erfindung ist die obere Abdecklage eine
Folie. Die dreidimensionale Struktur ist in der Ab-
decklage vorzugsweise derart ausgebildet, dass die
Folie Einsenkungen aufweist, die nach innen hinein-
gerichtet sind. Diese können nach innen hin konisch
oder pyramidal zulaufen. In dieser Ausführungsform
beiden sich die für Flüssigkeit durchlässigen Öf-
nungen am Boden der Einsenkungen, d.h. den Ab-
schnitt der dreidimensionalen Struktur, die der Ab-
orsptionslage am nächsten sind. Die Öffnungen kö-
nnen sich im Boden in der Mitte oder am Rand befin-
den. Vorzugsweise haben die Öffnungen die Form
von Schlitzten oder sind kleine punktförmige Öf-
nungen. Diese Ausführungsform hat den Vorteil, dass
sich, wenn Lebensmittel wie Fleisch auf der Saugein-
lage aufliegen, die austretende Flüssigkeit in den Ein-
senkungen sammeln und durch die durchlässigen
Öffnungen am Boden dieser Einsenkungen in die Ab-
orsptionslage eintreten kann. An den Stellen, an de-
nen das Lebensmittel voll auf der Saugeinlage auf-
liegt, also auf diese Druck ausübt, der so groß ist,
dass sich die Folie deformiert, stauchen sich diese
dreidimensionalen Strukturen punktuell zusammen,
was gleichzeitig zur Folge hat, dass sich die für Flüs-
sigkeit durchlässigen Öffnungen ähnlich einer Ventil-
lippe verkleinern. Für das zu lagernde Lebensmittel
hat diese Ausgestaltung den Vorteil, dass ohne Druck
auflaufende Flüssigkeit sofort absorbiert wird, wäh-
rend in Bereichen mit großer Druckausübung auf die
Saugeinlage sich die Öffnungen verschließen, so
dass keine weitere nennenswerte Flüssigkeit mehr
absorbiert wird. Logischerweise entsteht dann aus
einer so punktuell abgedeckten Oberfläche auch kei-
ne Produktflüssigkeit mehr. Damit ist in diesen ange-
nähten Bereichen, also dort wo das Fleisch sehr
nahe an dem Saugkern anliegt und wo es üblicher
Weise bei einer einfach perforierten Folie zu einer ak-
tiven Entwässerung kommen kann, keine Öffnung
mehr vorhanden, bzw. diese sehr weit verkleinert.
Weiterhin wird durch den Verschluss der Öffnung ein
migrieren von Bestandteilen aus dem Saugkern her-
aus in Richtung des Fleisch extrem minimiert bzw.
sogar verhindert.

[0010] Die obere Abdecklage ist vorzugsweise aus-
gewählt aus einem dehnbaren und/oder thermisch
verformbaren und in Form von Folien verfügbaren
Material, vorzugsweise aus einem thermoplastischen
Kunststoff. Derartige Kunststoffmaterialien können
Polyolefine, wie z.B. Polyethylen mit hoher, mittlerer
oder niedriger Dichte, Polypropylen, mit hoher, mitte-
rer oder niedriger Dichte, Polyethylen-terephthalat, di-
verse Copolymere aus diesen Materialien oder auch
Coextrudate aus diesen Materialien sein. Ebenfalls
geeignet und gut verarbeitbar sind biologisch abba-
bare Folien.

[0011] Die obere Abdecklage ist vorzugsweise an
der dem Lebensmittel zugewandten Seite der erfin-
dungsgemäßen Saugeinlage angeordnet. Diese Sei-
te wird im Folgenden als Oberseite bezeichnet.

[0012] Die auf der Unterseite der Saugeinlage an-
geordnete untere Abdecklage, d.h. die auf der dem
Lebensmittel abgewandten Seite angeordnet ist,
kommt aus einem beliebigen Material bestehen, das
eine abdeckende Eigenschaft aufweist. Vorzugswei-
se besteht diese weitere Folienlage auf der Unterseite
der Saugeinlage aus dem gleichen Material wie die
Folienlage auf der Oberseite oder aus einem fliess-
tigen Material auf Kunststoffbasis oder auf Cellulo-
basis.

[0013] Für verschiedene Anwendungen, z.B. vor-
konfektionierte Einzelpads für die Fleischschalen, hat
es sich von Vorteil erwiesen, beide Oberflächen mit
der gleichen modifizierten Folie zu versehen. Da-
durch, dass beide Oberflächen gleich beschaffen
sind, entfällt ein zeitaufwändiges orientieren der Pro-
dukte beim Einlegen in die Verpackung.

[0014] Die beiden Folienlagen sind erfindungsge-
mäß an ihren Außenkanten mindestens teilweise ver-
sehen. Vorzugsweise sind sie entlang der Au-
ßenkanten miteinander verbunden. Eine solche Aus-
gestaltung verhindert, dass Material aus der Absorpti-
onslage seitwärts herausströmt und mit dem Lebens-
mittel in Kontakt kommt. In einer möglichen Ausge-
staltung sind nur die Folienlagen miteinander verbun-
den, vorzugsweise miteinander verschweißt, ohne
die Absorptionslage mit zu erfassen. In dieser Ausge-
staltung ist die Absorptionslage quasi vollständig von
den beiden Folienlagen umhüllt. In dieser Ausgestal-
tung wird ein relativ weiches Produkt erhalten, das
auch innerhalb der Folienumhüllung verrutschen
kann.

[0015] In einer weiteren Ausführungsform werden die Kanten der Absorptionslage beim Verbinden der Folienlagen mitbeträgt. Dadurch wird ein relativ harter und festes Produkt erhalten, da die Absorptionslage nicht innerhalb der Umhüllung verrutschen kann.

[0016] In einer weiteren Ausführung werden die Schichten zusätzlich mittels Klebstoffen wie Hotmelt, Kaltleim usw. mit einander flächig fest verbunden. Es entsteht ein relativ steifes Produkt mit zumindest teilweise verschlossen und versiegelten Randbereichen, wobei das Produkt selber einen Sandwich-Charakter aufweist.


[0020] In einer weiteren Ausgestaltung der vorliegenden Erfindung sind Ober- und unterhalb der Absorptionslage noch ein oder mehrere Vliesgewebe oder ähnliche Lagen angeordnet, oder die Absorptionslage ist mit solchen Geweben beschichtet. Durch diese Gewebe wird die Absperrwirkung, wenn auf die Saugeinlage Druck ausgeübt wird, erheblich verbessert.


[0022] Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer Saugeinlage, in welchem eine Absorptionslage, die Sauggöße aufweist, beidseitig mit Abdecklagen bedeckt wird, wobei die obere Abdecklage aus einem wasserundurchlässigen Material besteht und eine dreidimensionale Struktur aufweist, und die Abdecklagen thermisch oder durch Druck an ihren Außenkanten wenigstens teilweise verschlossen werden.

[0023] In einem möglichen weiteren Verfahren zur Herstellung der erfindungsgemäßen Saugeinlage wird eine Absorptionslage, die Sauggöße aufweist, beidseitig mit Folienlagen bedeckt, die obere Abdecklage wird mit der 3-dimensionalen Strukturierung versehen, und die Abdecklagen werden thermisch oder durch Druck an ihren Außenkanten wenigstens teilweise verschlossen.

[0024] Vorzugsweise werden in einem ersten Verfahrensschritt die Absorptionslagen hergestellt und auf Sauggöße zugeschnitten. Anschließend erfolgt die Zufuhr der Abdecklagen für die Oberseite und die Rückseite der Saugeinlage. Sofern nicht mit einer vorstrukturierten Abdecklage gearbeitet wird, wird in den nachfolgenden Verfahrensschritten auf die Oberseite und ggf. auch auf die Rückseite die dreidimensionale Strukturierung der Folie aufgebracht und die Außenkanten werden miteinander verbunden, vorzugsweise miteinander verschweißt. Das Strukturieren der Folien kann thermisch und/oder durch mechanische Dehnung erfolgen. In einer möglichen Ausgestaltung wird die bereits aus drei Lagen beste hende Vorstufe der Saugeinlage durch eine weitere Lage geführt, wobei mindestens eine der Walzen als Prägewalze ausgebildet ist, so dass in das Folienmaterial die Einsenkungen nach unten eingedrückt werden. Das Einbringen der Öffnungen kann in an sich bekannter Weise durch übliche Schneidwerkzeuge, als Modifikation an der Prägung oder mittels Kalt- bzw. Heißnadelung oder punktuellen Überdehnen der Folie erfolgen. In einer bevorzugten Ausgestal-
tung weisen die bei der Strukturierung vorzugsweise eingesetzten Prägewalzen an ihrer Struktur Schneidkanten auf, die in die Folien beim Formen gleichzeitig Öffnungen in der gewünschten Größe und Form erzeugen.

[0025] Wie bereits oben beschrieben können die einzelnen Saugeinlagen in Form von Produktsträngen vorliegen. Das Verbinden des einzelnen Saugeinlagen zu Produktsträngen kann mittels thermischer oder mechanischer Siegelverfahren oder mittel Haftklebstoffen erfolgt.


Ausführungsbeispiel

[0028] Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen beschrieben. Es zeigen:

[0029] Fig. 1 eine Seitenansicht einer erfindungsgemäßen ersten Ausführungsform,

[0030] Fig. 2 eine Seitenansicht einer weiteren Ausführungsform,

[0031] Fig. 3 einen Querschnitt durch eine Einsenkung,

[0032] Fig. 4 eine Draufsicht auf eine Einsenkung,

[0033] Fig. 5 die Seitenansicht einer dritten Ausführungsform der vorliegenden Erfindung und

[0034] Fig. 6 die Seitenansicht einer vierten Ausführungsform der vorliegenden Erfindung.

[0035] In Fig. 1 und den Fig. 3 und Fig. 4 ist eine Saugeinlage dargestellt, die eine obere Folienlage 2 und eine untere Folienlage 3 aufweist. Die obere Folienlage 2 zeigt eine dreidimensionale Struktur, bei welcher die Folie eine Vielzahl gleichmäßig verteilter Einsenkungen 4 nach innen hinein aufweist. In der hier dargestellten Ausführungsform laufen die Wände 4a der Einsenkungen 4 nach innen hin konisch zu. Am flachen Boden 5 der Einsenkungen 4 befinden sich Öffnungen 6, durch welche die zu absorbierende Flüssigkeit in Richtung Absorptionslage 7 hindurchtritt. Die Öffnungen 6 sind Schlitze, da sich derartige Schlitze bereits bei einem geringen Stauchen der Folie 2 schließen. Die Schlitze befinden sich gemäß Fig. 3 und Fig. 4 nahe des Randes des Bodens 5.

[0036] Die Absorptionslage 7 weist hier als gestrichelt dargestellten ungerichteten Fasern 8 auf sowie Granulat 9 aus superabsorbierendem Material.

[0037] In der Ausführungsform gemäß Fig. 1 und Fig. 3 ist die untere Folienlage 3 glatt, d.h. unstrukturiert, also eben, oder anders formuliert: zweidimensional. Die obere und die untere Folienlagen 2 und 3 sind in der in Fig. 2 dargestellten Ausführungsform miteinander verbunden, ohne dass die Absorptionslage 7 miterfasst ist. Die Folienlagen 2 und 3 bilden für die Absorptionslage 7 eine Umhüllung, in der die Absorptionslage je nach Größe der Umhüllung auch verrutschen kann. So wird ein relativ leichtes Produkt erhalten.

[0038] In Fig. 2 ist eine weitere Ausführungsform der erfindungsgemäßen Saugeinlage dargestellt. Die Saugeinlage weist wiederum eine obere Folienlage 2 und eine untere Folienlage 3 auf. In der hier dargestellten Ausführungsform sind beide Folienlagen 2, 3 dreidimensional strukturiert. Sie weisen beide nach innen laufende Einsenkungen 4 auf, in deren Böden 5 sich die vorzugsweise schlitzförmigen Öffnungen 6 für die zu absorbierende Flüssigkeit befinden.

[0039] In der in Fig. 1 dargestellten Ausführungsform sind die Folienlagen 2, 3 an ihren Außenkanten 10 derart miteinander verbunden, dass auch die Außenkante 11 der Absorptionslage 7 miterfasst ist. In dieser Ausgestaltung ist die Absorptionslage 7 nahezu rutschfest in den beiden Folienlagen 2, 3 einge fasst. Die in Fig. 2 dargestellte Ausführungsform, in der sowohl die obere Folienlage 2 als auch die untere Folienlage 3 dreidimensional strukturiert ist, hat den Vorteil, dass eine dickere Saugeinlage erhalten wird, welche wiederum ein größeres Stauvolumen aufweist, als eine gleiche Saugeinlage, mit nur einer strukturierten Seite. Das größere Stauvolumen hat nun zur Folge, dass geringe Mengen superabsorbierendes Material benötigt werden, da diese Materia lien bei größerem Volumen auch mehr Flüssigkeit aufnehmen können.

[0040] Eine erfindungsgemäße Saugeinlage weist üblicherweise zwischen 3 und 25 Einsenkungen pro Quadratzentimeter auf, insbesondere zwischen 4 und 16 Einsenkungen. Die Öffnungen können in einem Winkel von 45° bis 180° geschlitzt werden, wobei vorzugsweise eine Größe von 0.01 bis 0.5 mm erhal-
ten wird, vorzugsweise ist eine Größe zwischen 0.05 und 0.2mm. Die superabsorbierenden Materialien, sofern sie enthalten sind, werden in der Regel als Faser oder Granulate eingesetzt. Die Größe der Öffnungen und die Größe des Granulats des superabsorbierenden Materials sollten derart aufeinander abgestimmt sein, dass das Granulat in trockenem Zustand nicht durch die Öffnungen fallen kann. Auf jeden Fall muss ein Kontakt des Granulats mit dem Lebensmittel vermieden werden.

[0041] In Fig. 5 ist eine dritte Ausführungsform der vorliegenden Erfindung dargestellt. Die erfindungsgemäße Saugeinlage 1 weist zwei Folienlagen 2, 3 mit jeweils dreidimensionaler Struktur auf. Die Absorptionslage 7 ist in der hier dargestellten Ausführungsform sowohl an dessen Oberseite als auch an dessen Unterseite mit einem Vlies 12 beschichtet. Dieses Vlies behindert die Durchlässigkeit für die zu absorbierende Flüssigkeit nicht, verbessert aber die Verschlusswirkung der Öffnungen 6, sobald auf die Saugeinlage 1 Druck ausgeübt wird. Wird auf die Saugeinlage 1 Druck ausgeübt, beispielsweise in Richtung der Absorptionslage 7, so kommt der Boden 5 der Einsenkung mit der Öffnung 6 mit dem Vlies 12 in Kontakt, wodurch sich die Öffnung 6 sofort schließt.

[0042] In Fig. 3 ist ein Querschnitt durch eine Einsenkung 4 mit einer Öffnung 6 dargestellt. Die Einsenkung 4 läuft nach innen hin konisch zu. Die Öffnung 6 befindet sich in der hier dargestellten Ausführungsform am Boden der Einsenkung.

[0043] Ein weiterer Effekt ist zu beobachten, wenn das Volumen der Absorptionslage 7 infolge der Absorption von Flüssigkeit zunimmt, dass von innen her Druck auf die Öffnungen 6 ausgeübt wird, so dass es auch hier zu einem Verschluss dieser Öffnungen kommt. Auch in diesem Fall wird die Wirkung durch ein Vlies 12 verstärkt.

[0044] In Fig. 6 ist eine weitere Ausführungsform einer erfindungsgemäßen Saugeinlage 1 mit zwei dreidimensional oberflächenstrukturierten Abdecklagen 2, 3 in einer Seitenansicht bereichsweise dargestellt. Im Gegensatz zu den vorhergehenden Ausführungen weist die Absorptionslage 7 bei diesem Beispiel eine im wesentlichen ebene Ober- und Unterseite auf, d.h. der Raum zwischen den Einsenkungen 4 trägt nicht zur Absorption bei. Die Absorptionslage 7 besteht aus Fasern 8, die nach Art einer Zellsstofflage bzw. nach Art eines Vlieses zwischen den Einsenkungen 4 liegen.

Bezugszeichenliste

1. Saugeinlage
2. Obere Folienlage
3. Untere Folienlage
4. Einsenkung
4a. Wand der Einsenkung 4
5. Boden der Einsenkung
6. Öffnung, Schlitz
7. Absorptionslage
8. Faser
9. Superabsorbierendes Material
10. Außenkante der Folienlage 2, 3
11. Außenkante der Absorptionslage 7
12. Vlies

Patentansprüche

1. Saugeinlage (1) aus einer oberen Abdachlage (2) und einer weiteren unteren Abdachlage, (3) sowie einer zwischen der oberen und der unteren Lage befindlichen Flüssigkeitsabsorptionslage (7), dadurch gekennzeichnet, dass mindestens eine der beiden Abdachlagen (2, 3) eine Folie darstellt und eine dreidimensionale Struktur aufweist und für Flüssigkeit durchlässige Öffnungen (6) hat, und dass die Saugeinlage (7) an ihren Außenkanten wenigstens teilweise verschlossen ist.

2. Saugeinlage nach Anspruch 1, dadurch gekennzeichnet, dass die dreidimensionale Struktur derart ausgebildet ist, dass die Folie zu der Absorptionslage hin Einsenkungen (4) aufweist.

3. Saugeinlage nach Anspruch 2, dadurch gekennzeichnet, dass die Einsenkungen (4) nach innen hin konisch oder pyramidal zulaufen.

4. Saugeinlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Öffnungen (6) sich ausschließlich am Boden der Einsenkungen (4) befinden.

5. Saugeinlage nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, die Öffnungen (6) kurze Schlitzte sind.

6. Saugeinlage nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, das die Herstellung der Öffnungen (6) mittels Kalt- oder Heißbandelung oder punktuellem Überdehnen der Folie erfolgt.

7. Saugeinlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die gewählte Abdachlage (2) ein thermoplastischem Kunststoff ist, der vorzugsweise auch dehnbar ist, insbesondere aus Polyethylen mit hoher, mittlere oder niederer Dichte, Polypropylen mit hoher, mittlerer oder niedrigerer Dichte, Copolymere aus unterschiedlichen Polyolefinen, insbesondere aus Polyethylenen und Polypropylen.
D E 10 2005 032 432 A1 2007.01.25

pylen, Polyethylenterephthalat, Coextrudate aus den vorstehend genannten Kunststoffmaterialien.

8. Saugeinlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, das die Folie biologisch abbaubar ist.

9. Saugeinlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die untere Abdecklage (3) aus dem gleichen Material besteht wie die obere Abdecklage (2) oder aus einem vielsortigen Material auf Kunststoff- oder Cellulosebasis.

10. Saugeinlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Abdecklagen (2, 3) entlang der Aussenkanten (9, 10) miteinander verbunden sind.

11. Saugeinlage nach Anspruch 10, dadurch gekennzeichnet, dass die Verbindung der Abdecklagen Folienlagen (2, 3) auch die Absorptionslage (7) mitgeteilt.

12. Saugeinlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Absorptionslage (7) ausgewählt ist aus vielsortigem oder gewerblichem Material auf Kunststoff- oder Cellulosebasis.

13. Saugeinlage nach Anspruch 12, dadurch gekennzeichnet, dass die Absorptionslage (7) ein Air-laid-Vlies oder ein Tissuepapier ist.

14. Saugeinlage nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Absorptionslage (7) superabsorbierende Materialien enthält.

15. Saugeinlage nach Anspruch 14, dadurch gekennzeichnet, dass die superabsorbierenden Materialien auf vernetzter Polycrylsäure, Carboxymethylcellulose, Pektinen oder Gelatinen basieren.


17. Saugeinlage nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Absorptionslageschicht enthält, die die Sauerstoff und/oder Geruchsstoffe absorbieren und/oder das Wachstum von Bakterien und/oder Schimmelpilzen hemmen.

18. Saugeinlage nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Absorptionslageschicht ein- oder beidseitig mit Vlies oder Tissue bekleidet ist.

19. Saugeinlage nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Saugeinlage in Form eines ein- oder mehrreihiger Produktstranges vorliegt, wobei die einzelnen Saugeinlagen durch Perforierungen oder anderen Schwächungen miteinander verbunden sind.


21. Verfahren zur Herstellung einer Saugeinlage nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass eine Absorptionslage, die Säuggröße aufweist, beidseitig mit Abdecklagen (2, 3) bedeckt wird, wobei die obere Abdecklage (2) aus einem wasserundurchlässigen Material besteht und eine dreidimensionale Struktur aufweist, und die Abdecklagen (2, 3) thermisch oder durch Druck an ihren Außenkanten wenigstens teilweise verschlossen werden.

22. Verfahren zur Herstellung einer Saugeinlage nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass eine Absorptionslage, die Säuggröße aufweist, beidseitig mit Folienlagen (2, 3) bedeckt wird, die obere Abdecklage (2) mit der dreidimensionalen Strukturierung versehen wird, und die Abdecklagen (2, 3) thermisch oder durch Druck an ihren Außenkanten wenigstens teilweise verschlossen werden.

23. Verfahren nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass die dreidimensionale Strukturierung thermisch oder mechanisch, d.h. mittels Dehnung, erfolgt.


27. Verfahren nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass die Produktkette zu einem Materialstapel bandgelegt wird.

28. Verwendung einer Saugeinlage nach einem der Ansprüche 1 bis 20 als Einlage für Lebensmittelverpackungen, insbesondere für Verpackungen für Fleisch-, Seafood, Geflügelprodukte und Früchte.

Es folgen 2 Blatt Zeichnungen