Offenlegungsschrift

Aktenzeichen: 10 2005 043 303.0
Anmeldetag: 12.09.2005
Offenlegungstag: 15.03.2007
Anmelder:
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 München, DE
Vertreter:
PFENNING MEINIG & PARTNER GbR, 80339 München
Erfinder:
Reber, Stefan, Dipl.-Phys. Dr., 79194 Gundelfingen, DE; Eyer, Achim, Dipl.-Phys. Dr., 79104 Freiburg, DE; Haas, Fridolin, Dipl.-Ing., 79199 Kirchzarten, DE

(71) Anmelder: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 München, DE
(74) Vertreter: PFENNING MEINIG & PARTNER GbR, 80339 München
(72) Erfinder: Reber, Stefan, Dipl.-Phys. Dr., 79194 Gundelfingen, DE; Eyer, Achim, Dipl.-Phys. Dr., 79104 Freiburg, DE; Haas, Fridolin, Dipl.-Ing., 79199 Kirchzarten, DE


Bezeichnung: Verfahren zur Rekrystallisation von Schichtstrukturen mittels Zonenschmelzen, hierfür verwendete Vorrichtung und dessen Verwendung

Beschreibung


Stand der Technik


[0004] Kristalline Silizium-Dünnschichtsolarzellen werden derzeit in unterschiedlichen Konzepten un- tersucht. Eines dieser Konzepte ist beispielhaft in Fig. 1 dargestellt. Für die Herstellung einer in Fig. 1 dargestellten Solarzelle sind die in Fig. 2 dargestell- ten Fertigungsschritte erforderlich. Der in Fig. 2 dar- gestellte Verfahrensschritt der Rekrystallisation der Schicht über die Flüssigphase kann mittels verschiede- dener Verfahren durchgeführt werden. Eines dieser Verfahren ist das Zonenschmelzen (engl. zone mel- ting recrystallization, ZMR). Dabei wird die in Fig. 1 dargestellte Keimstruktur von einer linienförmigen oder linienförmig gescannten Wärmequelle derart er- hitzt, dass die linienförmige die gesamte Breite des Substrates aufschmilzt. Diese geschmolzene Li- nie, d.i. die Schmelzzone, wird durch eine Relativbe- wegung von Substrat und Wärmequelle in senkrech- ter Richtung zur Schmelzzone in der Substratebene durch die gesamte Substratlänge gezogen.

[0005] Abhängig von der Ziegheschwindigkeit und dem Temperaturgradienten an den Schmelzzone- grenzen entstehen Kristalle, die in Ziehrichtung aus- gedehnt sind und unterschiedliche Abmessungen ha- ben. Typisches Ziel jenes Zonenschmelz-Prozesses ist es, möglichst große und defektarme Kristalle her- zustellen. Dieses Ziel läuft aber im Falle der Verwen- dung eines Zonenschmelz-Prozesses für die Photo- voltaik den ökonomischen Zielvorgaben für einen kostengünstigen Prozess entgegen. Unter ökonomi- schen Aspekten muss der Durchsatz so hoch wie möglich, d.h. mindestens 0,1 m²/min, sein, wobei gleichzeitig die bei moderaten Ziehgeschwindigkei- ten mögliche hohe Kristallqualität erhalten bleiben soll.

Aufgabenstellung


[0009] Erfindungswesentlich ist es dabei, dass mehrere Wärmequellen hinten- oder nebeneinander geschaltet werden, aber durch geschickte Steuerung der pro Zeiteinheit in die Schmelzzonen eingekoppel- ten Heizenergie ein Wechsel zwischen optimalen Zonenschmelzen und schnellem Transport ohne den Verlust der gewonnenen Kristallqualität erfolgt. Dieser Wechsel erlaubt es, die erfindungsgemäße Auf-
gabe zu lösen.


[0013] Hinsichtlich der Durchführung des Verfahrens sind drei Varianten bevorzugt.


[0015] Anschließend erfolgt in einer zweiten Phase, d.i. die Transportphase, der Transport der Schicht über eine sich an die erste Strecke in zu den linienförmigen Schmelzzonen senkrechter Richtung anschließende zweite Strecke. Diese zweite Strecke besitzt dabei eine Länge von (n − 1)d − b, wobei n die Anzahl der hintereinander angeordneten Wärmequellen darstellt und b so gewählt ist, dass es zu einer Überlappung der Schmelzzonen mit den bereits rekristallisierten Zonen kommt. In der Transportphase wird die Geschwindigkeit erhöht, wodurch die in der Schmelzphase rekristallisierte Schicht nicht aufgeschmolzen wird. Die Schmelzphase und die Transportphase werden so lange wiederholt, bis eine lückenlose Rekristallisierung der Schicht erreicht ist.

[0016] Diese erste Variante beruht somit darauf, dass die Schicht transportiert wird, während die Wärmequellen stationär sind.

[0017] Eine zweite erfindungsgemäße Variante sieht vor, dass in einer ersten Phase, d.i. die Schmelzphase, die mindestens zwei Wärmequellen in zu den linienförmigen Schmelzzonen senkrechter Richtung simultan über eine erste Strecke d + a bewegt werden, wobei d den Abstand zweier benachbarter Wärmequellen darstellt und a kleiner d ist. Auch hier ist es wieder bevorzugt, dass a wesentlich kleiner als d ist, z.B. im Bereich von 1:4 bis 1:100, da je kleiner die Strecke a gewählt ist, desto geringer die Überlappung wird und somit der Durchsatz erhöht wird. In der Schmelzphase wird die Geschwindigkeit so gering gewählt, dass eine hohe Kristallqualität ermöglicht wird.

[0018] In der Transportphase werden anschließend die mindestens zwei Wärmequellen über eine Strecke −(d + a) zurückbewegt, d.h. die Wärmequelle wird zu ihrem Ausgangspunkt zurücktransportiert. Anschließend wird dann die Schicht in hierzu entgegengesetzter Richtung über eine Strecke n d + a − b bewegt, wobei die Geschwindigkeit im Vergleich zu der Geschwindigkeit in der Schmelzphase erhöht wird, um ein Auflösen der Schicht zu verhindern. Auch hier bedeutet n die Anzahl der hintereinander angeordneten Wärmequellen und b ist so gewählt, dass es zu einer Überlappung der Schmelzzonen mit den bereits rekristallisierten Zonen kommt. Der Transport der Schicht kann dabei ebenso auch in der gleichen Richtung wie die Bewegungsrichtung der Schmelzzone bewegt werden. Allerdings bietet
der Transport entgegengesetzt der Richtung der Schmelzphase den Vorteil, dass der neue Startzyklus von einem bereits rekristallisierten Überlappendebereich des vorhergehenden Zyklus ausgeht.

[0019] Die Schmelzphase und die Transportphase werden alternierend so lange durchgeführt, bis die lückenlose Rekristallisation der Schicht realisiert ist. In der hier beschriebenen zweiten bevorzugten Variante werden somit sowohl die Wärmequellen als auch die Schicht transportiert.

[0020] Eine dritte bevorzugte Variante des erfindungsgemäßen Verfahrens sieht vor, dass in einer ersten Schmelzphase die mindestens zwei Schmelzzone in zu den linearen Schmelzzone senkrecht zur Richtung simultan über eine erste Strecke d + a gezogen werden, wobei die Geschwindigkeit so gewählt wird, dass eine hohe Kristallqualität ermöglicht wird. Die Strecken d und a besitzen die zuvor beschriebene Bedeutung.

[0021] In einer zweiten Phase, d.h. die Transportphase, werden die mindestens zwei Wärmequellen und/oder die Schicht über eine sich an die erste Strecke in zu den linearen Schmelzzone senkrecht zur Richtung anschließende zweite Strecke n-d + a - b bewegt, wobei die Geschwindigkeit gegenüber der ersten Schmelzphase erhöht wird, sodass die Schicht nicht aufgeschmolzen werden kann. N bedeutet hier die Anzahl der hintereinander angeordneten Wärmequellen und b ist so gewählt, dass es zu einer Überlappung der Schmelzzone mit den bereits rekristallisierten Schmelzzone kommt.

[0022] In einer weiteren Phase, der zweiten Schmelzphase, werden dann die mindestens zwei Schmelzzone in zu den linearen Schmelzzone senkrecht zur Richtung simultan über eine Strecke -(d + a) gezogen, wobei die Geschwindigkeit so gewählt ist, dass eine hohe Kristallqualität ermöglicht wird. Die Strecken d und a besitzen die zuvor beschriebene Bedeutung.

[0023] In einer vierten Phase, in der zweiten Transportphase, werden wiederum die mindestens zwei Wärmequellen und/oder die Schicht über eine sich an die erste Strecke hin zu den linearen Schmelzzone senkrecht zur Richtung anschließende zweite Strecke n + d + a - b bewegt. Auch hier wird wiederum die Geschwindigkeit gegenüber den Schmelzphasen erhöht. Die genannten Variablen haben die zuvor beschriebene Bedeutung und sind so gewählt, dass auch hier wieder eine Überlappung der Schmelzzone mit den bereits rekristallisierten Schmelzzone ermöglicht wird.

[0024] Die zuvor genannten drei Verfahrensschritte werden so lange wiederholt, bis eine lückenlose Rekristallisation der Schicht erreicht ist. In der hier beschriebenen dritten bevorzugten Verfahrensvariante bewegen sich somit sowohl die Wärmequellen als auch die Schicht.

[0025] Vorzugsweise wird in der Transportphase die Temperatur der Wärmequellen reduziert.

[0026] Vorzugsweise erfolgt die Bewegung der Wärmequellen und/oder der Schicht, d.h. die Relativbewegung zwischen beiden, in der Transportphase mit einer Geschwindigkeit, die um einen Faktor im Bereich von 2 bis 100 höher ist als in der Schmelzphase. Dieser Faktor ist dabei stark abhängig von der Anzahl der Schmelzzone und somit der Wärmequellen. So ist z.B. bei 10 Wärmequellen ein Faktor 2 bereits sehr effektiv, während bei nur zwei Wärmequellen ein Faktor von 10 oder mehr zu wählen ist.


[0031] Erfindungsgemäß wird ebenso eine Vorrichtung zur Rekristallisation von Schichtstrukturen mittels Zonenschmelzen mit mindestens zwei linearen Schmelzzone bereitgestellt. Durch die Wär-
mequellen werden in einer Schicht Schmelzzone erzeugt, wobei die Wärmequellen so angeordnet und bewegbar sind, dass sich die Schmelzzone mit bereits rekristallisierten Zonen bereichsweise überlappt und so eine lückenlose Rekristallisierung der Schicht gewährleistet wird.

[0032] In einer bevorzugten Variante sind die Wärmequellen in senkrechter Richtung zu den linienförmigen Schmelzzone nebeneinander angeordnet, wobei die nebeneinander angeordneten Wärmequellen zueinander jeweils ein Versatz in zu den linienförmigen Schmelzzone senkrechter Richtung aufweisen, sodass sich die durch die Wärmequellen erzeugten Schmelzzonen bereichsweise überlappen.

[0033] Eine andere bevorzugte Variante sieht vor, dass mindestens vier Wärmequellen arrayartig zur Halbleiterschicht angeordnet sind, wobei die nebeneinander angeordneten Wärmequellen zueinander jeweils ein Versatz in zu den linienförmigen Schmelzzone senkrechter Richtung aufweisen, sodass sich die durch die Wärmequellen erzeugten Schmelzzonen bereichsweise überlappen.


[0035] Eine weitere bevorzugte Variante der erfundungsgemäßen Vorrichtung sieht vor, dass die Wärmequellen mit Fokussierspiegeln versehen sind.


Ausführungsbeispiel

[0037] Anhand der nachfolgenden Figuren soll der erfindungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigten speziellen Ausführungsformen einschränken zu wollen.

[0038] Fig. 1 zeigt in einer schematischen Darstellung den Aufbau einer aus dem Stand der Technik bekannten Silizium-Dünnschichtsolarzelle.

[0039] Fig. 2 zeigt anhand eines Flussdiagramms den Prozessablauf zur Herstellung rekristallisierter Silizium-Dünnschichtsolarzellen.

[0040] Fig. 3 zeigt eine Schnittdarstellung der erfungungsgemäßen Vorrichtung.

[0041] Fig. 4 zeigt anhand einer schematischen Darstellung eine erfindungsgemäße Variante mit entsprechender arrayartiger Anordnung der Wärmequellen.

[0042] In Fig. 1 ist eine aus dem Stand der Technik bekannte Silizium-Dünnschichtsolarzelle dargestellt, die auf einem mit einem Basiskontakt 1 auf der Rückseite versehenen Substrat 2 basiert. Auf dem Substrat ist eine Zwischenschicht 3 angeordnet, die wiederum von einer Keimschicht 4 überdeckt ist. Bei der Keimschicht handelt es sich um eine rekristallisierte und hochdotierte Siliziumschicht. Auf der Keimschicht wiederum ist eine Absorberschicht 5 abgeschieden, die normal dotiert ist. Das Schichtsystem wird durch eine Emitterschicht 6 und eine Antireflexbzw. Passivierungsschicht 7 abgeschlossen. Auf diesem Schichtstapel ist dann noch ein Emitterkontakt 8 aufgebracht.

[0043] Fig. 2 zeigt schematisch den Ablauf des Herstellungsverfahrens für das in Fig. 1 dargestellte Schichtsystem. Der erfindungswesentliche Kern betrifft hierbei den Schritt 5 der Rekristallisierung der Keimschicht, der gemäß dem Zonenschmelz-Verfahren durchgeführt wird.

[0044] Fig. 3 zeigt schematisch die erfindungsgemäße Verfahrensführung, bei der eine Kaskade von Wärmequellen 10, 10', 10" in der Vorrichtung eingesetzt wird. Die Gesamtkaskade besteht aus bis zu n Wärmequellen. Die einzelnen Wärmequellen sind von dazugehörigen Fokussierspiegeln 11, 11' und 11" umgeben, mit denen die Wärmestrahlung auf die Schichtstruktur fokussiert wird. Die Schichtstruktur besteht hierbei wieder aus einem Substrat 2, einer Zwischenschicht 3 sowie der zu rekristallisierenden Keimschicht 4. Diese ist durch eine optionale Deckschicht 9 abgedeckt. Der Abstand zwischen den einzelnen Wärmequellen ist hier mit einer Länge d angegeben, wobei der Transport während der Schmelzphase noch um einen weiteren Streckenabschnitt a weitergeführt wird, um eine Überlappung der Schmelzzone sicherzustellen.

[0045] Fig. 4 zeigt eine besonders bevorzugte Variante des erfindungsgemäßen Verfahrens. Hierbei sind die einzelnen Wärmequellen sowohl nebeneinander als auch hintereinander angeordnet, was zu einer arrayartigen Anordnung führt. Durch den angeordneten Versatz der Wärmequellen in den verschiedenen Reihen kommt es zu einer Überlappung der „Schmelzreihen“. Innerhalb jeder einzelnen Reihe wiederum sind n Wärmequellen angeordnet, wobei auch die durch diese Wärmequellen erzeugten Schmelzzone überlappen. Durch diese arrayartige Anordnung kann der Durchsatz des Zonenschmelz-Prozesses nochmals erhöht werden.
Patentansprüche

1. Verfahren zur Rekristallisierung von Schichtstrukturen mittels Zonenschmelzen, bei dem mit mindestens zwei Wärmequellen lineinflamm ge- zeigte Schmelztemperaturen durch die Schicht mittels einer Relativbewegung der Wärmequellen zu der Schicht in senkrechter Richtung zu den lineinflamm Schmelztemperaturen gezogen werden, wobei die Schmelz- zonen simultan durch die gesamte Schicht unter be- reichswise Überlappung der Schmelztemperaturen mit be- reits rekristallisierten Zonen gezogen werden, so dass eine lückenlose Rekristallisierung der Schicht gewährleistet wird.

2. Verfahren nach Anspruch 1, dadurch gekenn- zeichnet, dass die Relativbewegung durch einen Transport der Schicht ermöglicht wird.

3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rela- tivbewegung durch einen Transport der Wärmequel- len ermöglicht wird.


6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass a) in einer ersten Phase (Schmelzphase) die mindestens zwei Schmelztemperaturen in zu den lineinflamm Schmelztemperaturen senkrechter Richtung simultan über eine erste Strecke d + a und mit einer eine hohe Kris- tallqualität ermöglichen Geschwindigkeit durch die Schicht gezogen werden, wobei d den Abstand zweier benachbarter Wärmequellen darstellt und a < d, und b) die Schicht in einer zweiten Phase (Transportpha- se) über eine sich an die erste Strecke in zu den lineinflamm Schmelztemperaturen senkrechter Richtung anschließende zweite Strecke (n - 1);d – b und mit einer gegenüber der ersten Phase erhöhten Geschwin- digkeit bewegt werden, bei der die Schicht nicht aufge- schmolzen wird, wobei n die Anzahl der hintereinander angeordneten Wärmequellen darstellt und b so gewählt ist, dass es zu einer Überlappung der Schmelztemperaturen mit den bereits rekristallisierten Zonen kommt, wobei die Schritte a) und b) bis zur lückenlosen Re- kristallisierung der Schicht wiederholt werden.

7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass a) in einer ersten Phase (Schmelzphase) die mindestens zwei Wärmequellen in zu den lineinflamm Schmelztemperaturen senkrechter Richtung simultan über eine erste Strecke d + a und mit einer eine hohe Krist- tallqualität ermöglichen Geschwindigkeit bewegt werden, wobei d den Abstand zweier benachbarter Wärmequellen darstellt und a < d, und b) die Wärmequellen in einer zweiten Phase (Transport- phase) über eine Strecke -(d + a) zurückbewegt wird und die Schicht in hierzu entgegen gesetzter Richtung über eine Strecke n·d + a = b und mit einer gegenüber der ersten Phase erhöhten Geschwindigkeitsbeweg werden, bei der die Schicht nicht aufge- schmolzen wird, wobei n die Anzahl der hintereinan- der angeordneten Wärmequellen darstellt und b so gewählt ist, dass es zu einer Überlappung der Schmelztemperaturen mit den bereits rekristallisierten Zonen kommt, wobei die Schritte a) und b) bis zur lückenlosen Re- kristallisierung der Schicht wiederholt werden.

8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass a) in einer ersten Schmelzphase die mindestens zwei Schmelztemperaturen in zu den lineinflamm Schmelztempe- raturen senkrechter Richtung simultan über eine erste Strecke d + a und mit einer eine hohe Kristallqualität ermöglichen Geschwindigkeit durch die Schicht gezogen werden, wobei d den Abstand zweier benachbarter Wärmequellen darstellt und a < d, und b) die Wärmequellen und/oder die Schicht in einer zweiten Phase (Transportphase) über eine sich an die erste Strecke in zu den lineinflamm Schmelz- temperaturen senkrechter Richtung anschließende zweite Strecke n·d + a = b und mit einer gegenüber der ersten Phase erhöhten Geschwindigkeit bewegt werden, bei der die Schicht nicht aufgeschmolzen wird, wobei n die Anzahl der hintereinander angeordneten Wärmequellen darstellt und b so gewählt ist, dass es zu einer Überlappung der Schmelztemperaturen mit den bereits rekristallisierten Zonen kommt, c) in einer zweiten Schmelzphase die lineinflamm Schmelztemperaturen senkrechter Richtung simultan über eine Strecke -(d + a) und mit einer eine hohe Kristall- qualität ermöglichen Geschwindigkeit durch die Schicht gezogen werden, wobei d den Abstand zweier benachbarter Wärmequellen darstellt und a < d und d) in einer zweiten Transportphase die Wärmequellen und/oder die Schicht über eine sich an die erste Strecke in zu den lineinflamm Schmelztemperaturen senkrechter Richtung anschließende zweite Weg- strecke n·d + a = b und mit einer gegenüber der ersten Phase erhöhten Geschwindigkeit bewegt werden, bei der die Schicht nicht ausgeschmolzen wird, wobei n die Anzahl der hintereinander angeordneten Wärmequellen darstellt und b so gewählt ist, dass es
zu einer Überlappung der Schmelzzonen mit den bereits rekristallisierten Zonen kommt, wobei die Schritte a), b), c) und d) bis zur lückenlosen Rekristallisierung der Schicht wiederholt werden.

9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass in der Transportphase die Temperatur der Wärmequellen reduziert wird.

10. Verfahren nach einem Anspruch 6 bis 9, dadurch gekennzeichnet, dass die Wärmequellen in der Transportphase mit einer um einen Faktor im Bereich von 2 bis 100 höheren Geschwindigkeit als in a) bewegt werden.

11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmequellen in senkrechter Richtung zu den linienförmigen Schmelzzonen nebeneinander angeordnet werden, wobei die nebeneinander angeordneten Wärmequellen zueinander jeweils einen Versatz in zu den linienförmigen Schmelzzonen senkrechter Richtung aufweisen, so dass sich die durch die Wärmequellen erzeugten Schmelzzonen bereichsweise überlappen.


13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schicht mit einem Substrat verbunden ist.


15. Vorrichtung zur Rekristallisierung von Schichtstrukturen mittels Zonschmelzen mit mindestens zwei linienförmigen Wärmequellen, durch die in einer Schicht Schmelzzonen erzeugt werden, wobei die Wärmequellen so angeordnet und bewegbar sind, dass sich die Schmelzzonen mit bereits rekristallisierten Zonen bereichsweise überlappen und so eine lückenlose Rekristallisierung der Schicht gewährleistet wird.

16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Wärmequellen in senkrechter Richtung zu den linienförmigen Schmelzzonen nebeneinander angeordnet sind, wobei die nebeneinander angeordneten Wärmequellen zueinander jeweils einen Versatz in zu den linienförmigen Schmelzzonen senkrechter Richtung aufweisen, so dass sie die durch die Wärmequellen erzeugten Schmelzzonen bereichsweise überlappen.

17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass mindestens vier Wärmequellen arrayartig zur Halbleiterschicht angeordnet sind, wobei die nebeneinander angeordneten Wärmequellen zueinander jeweils einen Versatz in zu den linienförmigen Schmelzzonen senkrechter Richtung aufwei-

18. Vorrichtung nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Wärmequellen unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Elektronenstrahlheizer, Laserstrahlquellen, Graphitstreifenheizer, Halogenlampenheizer, IR-Strahler und UV-Strahler.

19. Vorrichtung nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass die Wärmequellen mit Fokussierspiegeln versehen sind.

20. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 14 zur Herstellung von kristallinem Silicium-Dünnschichtsolarzellen.


22. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 14 zur Verarbeitung von Metallen, Kunststoffen oder Klebstoffen.

Es folgen 4 Blatt Zeichnungen.
Fig. 2

