Offenlegungsschrift

(21) Aktenzeichen: 10 2006 013 988.7
(22) Anmeldetag: 22.03.2006
(43) Offenlegungstag: 27.09.2007

(71) Anmelder: Concert GmbH, 16928 Pritzwalk, DE
(74) Vertreter: Eisenführ, Speiser & Partner, 10178 Berlin

(51) Int Cl.: C08J 5/04 (2006.01)
C08L 23/12 (2006.01)
C08L 33/02 (2006.01)

(72) Erfinder: Hansen, Morten Rise, 16928 Pritzwalk, DE; Ehmke, Ralf, 16945 Meyenburg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Faserverstärkter Thermoplast

Beschreibung

Hintergrund der Erfindung

Erfindungsgemäße Lösung

[0010] Die Aufgabe wird gelöst durch einen faserverstärkten Thermoplast umfassend:
 a) ein Airlaid-Zellulosefasermaterial in
 b) einer thermoplastischen Matrix.

von Restposten als faserverstärkende Komponente in Thermoplast-Verbundwerkstoffen besonders bevorzugt.

[0019] Faserzellstoff ist die Bezeichnung für die beim Aufschluss von Holz oder anderen Pflanzenfasern anfallende, feinfasige, vorwiegend aus Zellulose bestehende Masse. Es ist ein veredeltes Naturprodukt, liegt als weißer, faserartiger Feststoff bei Raumtemperatur vor und besitzt einen Zellulosegehalt von über 95 Gew.-%.

[0023] Thermoplaste ist die Bezeichnung für polymere, bei Gebrauchstemperatur weiche oder harte Werkstoffe, die oberhalb der Gebrauchstemperatur einen Fließübergangsbereich besitzen. Thermoplaste bestehen aus linearen oder verzweigten Polymeren, die im Falle amorphen Thermoplaste oberhalb der Glasübergangstemperatur (T_g), im Falle (teil)kristalliner Thermoplaste oberhalb der Schmelztemperatur (T_m) prinzipiell fließfä-

[0030] Vorzugsweise weist der Thermoplast folgende Zusammensetzung auf:
10–70 Gewichtsteile Airlaid-Zellulosefasermaterial,
30–90 Gewichtsteile thermoplastische Matrix und
0,01–15 Gewichtsteile Hilfs- und Zusatzstoffe.
Ein Thermoplast der genannten Zusammensetzung lässt sich gut verarbeiten, sei es zu einem Granulat, zu einem Halbzeug oder in anderer, zur Verarbeitung geeigneter Form.

Der erfindungsgemäße Thermoplast, einschließlich der hier beschriebenen bevorzugten Ausführungsformen, ist vorzüglich geeignet zum Bilden eines Formteils, insbesondere zur Verwendung in der Automobilindustrie. Besonders vorteilhaft ist dabei ein Formteil, das durch Verwendung eines erfindungsgemäßen Thermoplasten erreichbare hohe Schlagzähigkeit und Kerbschlagzähigkeit bei gleichzeitiger Einsparung an Material der kostenaufwändigen Thermoplast-Matrix.

Nachfolgend wird die Erfindung anhand der Beispiele weiter erläutert, die jedoch den Schutzbereich der Erfindung nicht beschränken. Alle Angaben beziehen sich nachfolgend auf Gewichtsteile, soweit nichts anderes angegeben ist.

Beispiel 1 – Restposten der Airland-Vlies-Herstellung/Verarbeitung

Restposten, die bei der industriellen Herstellung oder Verarbeitung von Airland-Vliesen anfallen, werden in einem Shredder zerkleinert. Das erhaltene Streugut hat typischerweise folgende Zusammensetzung:

(i) 70 Gewichtsteile Zellulosefasern aus Faserzellsstoff mit einer Faserlänge von 2–3 mm.
(iii) 10 Gewichtsteile eines superabsorbierenden Polymers (SAP), nämlich einem Polycrylat. Alternativ können modifizierte Stärke oder andere wasserunlösliche gelbbildende Polysaccharide eingesetzt werden.
(iv) 8 Gewichtsteile Latex.
(v) 2 Gewichtsteile Polypropylen.

Der Restposten wird in einem Gewichtsverhältnis von 1 : 1 mit Pellets aus einem Polypropylen vermengt und durch thermomechanische Bearbeitung agglomeriert. Pelletieren des Produkts liefert ein Granulat.

Beispiel 2 – Restposten der Windelherstellung

Restposten aus der Herstellung und Verarbeitung von Windeln werden in einem Shredder zerkleinert. Das erhaltene Streugut hat die folgende typische Zusammensetzung:

(i) 43 Gewichtsteile Zellulosefasern aus Faserzellsstoff, die aus Airland-Vliesen stammen. Die Faserlänge liegt bei 2–3 mm.
(ii) 27 Gewichtsteile eines superabsorbierenden Polymers (SAP), nämlich einem Polycrylat. Alternativ können modifizierte Stärke oder andere wasserunlösliche gelbbildende Polysaccharide eingesetzt werden.
(iv) 3 Gewichtsteile Kleber
(v) 1 Gewichtsteil elastische Anteile.

Der Restposten wird in einem Gewichtsverhältnis von 1 : 1 mit Pellets aus einem Polypropylen vermengt und durch thermomechanische Bearbeitung agglomeriert. Pelletieren des Produkts liefert ein Granulat.
Vergleich der Schlag- und Kerbschlagzähigkeit erfindungsgemäßer Thermoplaste mit anderen Materialien

[0039] Polypropylen-Granulat (nachfolgend „PP“, Borealis HK 060 AE) wurde mit Holzmehl (nachfolgend „Holz“) bzw. Airlaid-Zellulosefasermaterial nachfolgend („Cell“) in den in Tabelle 1 angegebenen Verhältnissen gemischt und spritzgussverarbeitet zu 4 mm dicken ISO-Normstäben:

<table>
<thead>
<tr>
<th>Material</th>
<th>Dosiervolumen [cm³]</th>
<th>Einspritzdruck [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylen (PP)</td>
<td>55</td>
<td>200</td>
</tr>
<tr>
<td>PP/Holz 90/10</td>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>PP/Holz 75/25</td>
<td>60</td>
<td>650</td>
</tr>
<tr>
<td>PP/Holz 60/40</td>
<td>60</td>
<td>700</td>
</tr>
<tr>
<td>PP/Holz 50/50</td>
<td>60</td>
<td>800</td>
</tr>
<tr>
<td>PP/Cell 90/10</td>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>PP/Cell 75/25</td>
<td>60</td>
<td>700</td>
</tr>
<tr>
<td>PP/Cell 60/40</td>
<td>60</td>
<td>750</td>
</tr>
<tr>
<td>PP/Cell 50/50</td>
<td>60</td>
<td>900</td>
</tr>
</tbody>
</table>

Tabelle 1

[0040] Die Werkzeugtemperatur betrug 25 °C, die Schneckenumfangsgeschwindigkeit 10 m/min, der Staudruck 10 bar, die Einspritzgeschwindigkeit 60 cm³/s und die Restkühlzeit 20 s. Das Airlaid-Zellulosefasermaterial enthielt 70 Gew.-% Fluff Pulp-Zellulose, 10 Gew.-% synthetische Fasern aus Polyethylen, Polypropylen und/oder Polyethylenterephthalat, 8 Gew.-% Latex, 10 Gew.-% superabsorbierende Polymerpartikel, Rest Polypropylen-Carrier.

[0041] Die hergestellten ISO-Normstäbe wurden gemäß DIN EN ISO 179/1eAU mit einem Pendel-Zwischenschlagwerk bei 23 °C (Schlagzähigkeit Pendel ohne Kerbe: 5 J unverstärkt [100% PP], 2 J verstärkt [Rest]; Kerbschlagzähigkeit Pendel mit Kerbe: 0,5 J) auf ihre Schlagzähigkeit und Kerbschlagzähigkeit untersucht. Tabelle 2 zeigt die Ergebnisse:
<table>
<thead>
<tr>
<th>Material</th>
<th>Schlagzähigkeit a_{CU} (Mittelwert), [kJ/m²]</th>
<th>Kerbschlagzähigkeit a_{CN} (Mittelwert), [kJ/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylen (PP)</td>
<td>46,9</td>
<td>1,20</td>
</tr>
<tr>
<td>PP/Holz 90/10</td>
<td>12,9</td>
<td>1,22</td>
</tr>
<tr>
<td>PP/Holz 75/25</td>
<td>9,27</td>
<td>2,15</td>
</tr>
<tr>
<td>PP/Holz 60/40</td>
<td>6,91</td>
<td>2,70</td>
</tr>
<tr>
<td>PP/Holz 50/50</td>
<td>5,15</td>
<td>2,90</td>
</tr>
<tr>
<td>PP/Cell 90/10</td>
<td>18,1</td>
<td>1,25</td>
</tr>
<tr>
<td>PP/Cell 75/25</td>
<td>15,6</td>
<td>2,64</td>
</tr>
<tr>
<td>PP/Cell 60/40</td>
<td>16,3</td>
<td>3,77</td>
</tr>
<tr>
<td>PP/Cell 50/50</td>
<td>16,1</td>
<td>4,43</td>
</tr>
</tbody>
</table>

Tabelle 2

Vergleich der Ausgasungswerte erfindungsgemäßer Thermoplaste mit anderen Materialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Kondensierbarer Bestandteil G, [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylen (PP)</td>
<td>1,87</td>
</tr>
<tr>
<td>PP/Holz 90/10</td>
<td>1,35</td>
</tr>
<tr>
<td>PP/Holz 75/25</td>
<td>1,26</td>
</tr>
<tr>
<td>PP/Holz 60/40</td>
<td>1,15</td>
</tr>
<tr>
<td>PP/Holz 50/50</td>
<td>0,97</td>
</tr>
<tr>
<td>PP/Cell 90/10</td>
<td>1,48</td>
</tr>
<tr>
<td>PP/Cell 75/25</td>
<td>1,15</td>
</tr>
<tr>
<td>PP/Cell 60/40</td>
<td>0,86</td>
</tr>
<tr>
<td>PP/Cell 50/50</td>
<td>0,87</td>
</tr>
</tbody>
</table>

[0044] Man erkennt, dass die erfindungsgemäßen faserverstärkten Thermoplasten im Vergleich zu holzverstärkten Thermoplasten und gegenüber reinem Polypropylen insbesondere ab einem Anteil von 25 Gew.-% an Airlaid-Zellulosefasermaterial teilweise deutlich bessere, d.h. geringere, Kondensatwerte haben und so einer wesentlichen Forderung der Automobilindustrie nach verringelter Kondensation flüchtiger Bestandteile an Scheiben o.ä. nachkommen.

Patentansprüche

1. Faserverstärkter Thermoplast, umfassend:
 a) ein Airlaid-Zellulosefasermaterial in
 b) einer thermoplastischen Matrix.

5. Faserverstärkter Thermoplast nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die
thermoplastische Matrix gänzlich oder zu einem überwiegenden Teil von Polypropylen gebildet ist.

6. Faserverstärkter Thermoplast nach einem der vorherigen Ansprüche, ferner umfassend superabsorbierende Polymere.

9. Faserverstärkter Thermoplast nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die längengewichtete Faserlänge des Zellulosefasermaterials 0,5 bis 5 mm beträgt.

10. Faserverstärkter Thermoplast nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Anteil der thermoplastischen Matrix 30 bis 90 Gew.-% bezogen auf die Gesamtmenge des faserverstärkten Thermoplasten beträgt.

11. Formteil, herstellbar oder hergestellt durch Formen eines faserverstärkten Thermoplasten nach einem der vorherigen Ansprüche.

Es folgt kein Blatt Zeichnungen