Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

Prüfungsantrag gemäß § 44 PatG ist gestellt.

(54) Bezeichnung: Verfahren und Vorrichtung zum Überwachen, Steuern und/oder Regeln des Spritzverhaltens einer Metallschmelze

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zum Überwachen, Steuern und/oder Regeln des Herauspritzens von Metallpartikeln (1) aus der Oberfläche (2) eines schmelzflüssigen Metallbades (3), wobei sich die Metallschmelze in einem metallurgischen Gefäß (4) befindet und wobei in dem Gefäß (4) ein Unterdruck erzeugt wird. Zur Verbesserung des Schmelzeaufbereitungsprozesses ist erfindungsgemäß vorgesehen, dass zumindest ein Teil des oberhalb des Badspiegels liegenden Bereichs (5) von einem Erfassungsgerät (6) beobachtet wird, wobei das Erfassungsgerät (6) eine physikalische und/oder geometrische Größe erfassen kann, die ein Maß für die Intensität (I_u) des Herausreißens von Flüssigmetallpartikeln (1) aus dem Bad (3) ist. Des Weiteren betrifft die Erfindung eine entsprechende Vorrichtung zum Überwachen, Steuern und/oder Regeln.
Beschreibung

[0002] In der Flüssigmetallerzeugung wird die Metallschmelze im Rohrzustand häufig in nachgeordneten Einrichtungen der Sekundärmetallurgie weiter behandelt, bis ein gewünschter metallurgischer Zustand der Schmelze erreicht ist. Dies gilt insbesondere für Rohstahl aus dem Konverterprozess oder dem Elektrooßen-Schmelzprozess.

[0016] Demgemäß ist es zwar erforderlich, zwecks Erreichen eines effizienten Prozesses ein gewisses Spritzverhalten der erläuterten Weise in der Schmelze zu haben, jedoch darf das Spritzen nicht zu groß sein, damit die metallurgische Anlage nicht übermäßig belastet wird.

[0017] Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art bereitzustellen, mit dem bzw. mit der es möglich ist, einen verbesserten Behandlungsprozeß zu führen, wobei insbesondere die Beaufschlagung der Anlage mit Verbärbungen herabgesetzt und damit die Verfügbarkeit der Anlage erhöht wird. Es soll also möglich sein, bei dem in Rede stehenden Prozess einen besseren Einfluss auf das Spritzverhalten bei der Schmelzebehandlung zu nehmen, um den Prozess optimiert zu betreiben.

[0018] Diese Aufgabe wird durch die Erfindung verfahrensweise dadurch gelöst, dass zumindest ein Teil des oberhalb des Badspiegels liegenden Bereichs von einem Erfassungssystem beobachtet wird, wobei das Erfassungsgerät eine physikalische und/oder geometrische Größe erfassen kann, die ein Maß für die Intensität des Herausreißens von Flüssigmetallpartikeln aus dem Bad ist.

[0020] Alternativ hierzu kann vorgesehen werden, dass die erfassbare Größe die Wärmestrahlung im Bildausschnitt, d. h. des beobachteten Bereiches, ist.

[0021] Die physikalische oder geometrische Größe wird bevorzugt durch eine vakuumdicht verschlossene Öffnung, insbesondere durch einen Beobachtungssutzen, im metallurgischen Gefäß hindurch erfasst.

[0022] Die erfassbare physikalische und/oder geomet-
rische Größe wird gemäß einer besonders bevorzugten Ausgestaltung der Erfindung einer Steuerung oder Regelung zugeleitet, die so eine Einflussnahme auf einen Prozessparameter nimmt, dass die erfasserte Größe bei einem vorgegebenen Wert oder innerhalb eines vorgegebenen Wertebereichs liegt.

[0025] Bei der Vorrichtung zum Überwachen, Steuern und/oder Regeln des Harrispritzens von Metallpartikeln aus der Oberfläche eines schmelzflüssigen Metallbades, die ein metallurgisches Gefäß, in dem sich eine zu behandelnde Metallschmelze befindet, sowie Mittel zum Erzeugen eines Unterdrucks im metallurgischen Gefäß umfaßt, ist erfindungsgemäß vorgesehen, dass sie weiterhin ein Erfassungsgerät aufweist, das zur Auswertung zumindest eines Teils des oberhalb des Badspiegels liegenden Bereichs ausgebildet und geeignet ist, wobei das Erfassungsgerät zur Erfassung einer physikalischen und/oder geometrischen Größe geeignet ist, die ein Maß für die Intensität des Herausreißen's von Flüssigmetallpartikeln aus dem Bad ist.

[0027] Das metallurgische Gefäß kann eine vakuumdicht verschlossene Öffnung, insbesondere einen Beobachtungsstutzen, aufweisen.

[0028] Die Vorrichtung kann weiterhin eine Steuerung oder Regelung aufweisen, die zur Einflussnahme auf einen Prozessparameter ausgebildet ist.

[0032] Im einfachsten Falle erfolgt eine Auswertung eines ermittelten Spritz-Bildes durch Zählung der Anzahl und Größe der Projektionsflächen der Spritzer, was ein Maß für die Spritzintensität ist. Es kann auch eine Ermittlung der Änderungsgeschwindigkeit und der Größenverteilung der Projektionsflächen der Spritzer erfolgen.

Abgasrückführung, verfälschen die Abgasanalyse und die Abgasdurchflussmessung am Austritt der Vakuumpumpe.

[0039] Mit dem vorgeschlagenen Verfahren und der entsprechenden Vorrichtung ist es möglich, das Spritzverhalten in der Schmelze so zu beeinflussen, insbesondere so zu regeln, dass die Höhe des Spritzens einen definierten und vorgegebenen, unschädlichen Wert nicht überschreitet, wobei gleichzeitig jedoch die Spritzhöhe immer noch ausreichend ist, um – eine optimale Behandlung des Flüssigmetalls zu erreichen,
– insbesondere den eingangs erläuterten RH-Prozess auf eine vorgegebene Bauhöhe anzupassen und
– bei RH-Anlagen mit geringer Bauhöhe sichere Betriebsbedingungen und eine ausreichende Anlagenverfügbarkeit zu erreichen.

[0041] Es ist ein sicherer Betrieb kurzer RH-Gefäße möglich, wodurch die Möglichkeit besteht, die Gefäßhöhe an bauliche Gegebenheiten anpassen und Gefäßhöhen optimieren zu können.

[0042] Weiterhin ist eine Erzielung reproduzierbarer Entkohlungsergebnisse möglich, d. h. der Endpunkt der Entkohlung kann gesicherter als bislang erreicht werden kann.

[0048] Damit kann die Behandlungsdauer von Metallschmelzen, insbesondere die Entgasung und Entkohlung von Stahlschmelzen, optimiert werden, wobei gleichzeitig eine Verbesserung der Verfügbarkeit
der Anlage erreichbar ist. Dies kommt dem Anspruch nach kürzeren Durchlaufzeiten und größeren Schmelzenfolgen entgegen, d. h. es wird ein höherer Durchsatz möglich.

[0049] In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen:

[0050] Fig. 1 einen Schnitt durch eine Vorrichtung zur Entgasung und Entkohlung einer Metallschmelze; und

[0051] Fig. 2 schematisch eine Regelleinrichtung zur Regelung des Entgasungs- bzw. Entkohlungsprozesses in der Anlage gemäß Fig. 1.

[0052] In Fig. 1 ist ein metallurgisches Gefäß 4 dargestellt, in dem ein Metallbad 3, d. h. eine Metallschmelze, eingefault ist, in die von oben zwei Tauchrohre 12 und 13 eines über dem metallurgischen Gefäß 4 angeordneten angrenzenden Anlagensteils 8 in Form eines Umlauf-Vakuumgefäßes ragen. Im oberen Bereich des Vakuumgefäßes 8 ist eine Unterdruckleitung 14 angeschlossen, über die entstehende Gase abgezogen werden, so dass im Inneren des Vakuumgefäßes 8 ein Vakuum entsteht. Mit Hilfe eines Lüftgases (Argon) gelangt die Schmelze 3 durch das Tauchrohr 12 im Kreislauf durch das Vakuumgefähzelf 8 und das andere Tauchrohr 13 zurück in das metallurgische Gefäß 4. Mit 16 ist die Stelle markiert, an der der Argon eingegeben wird.

[0053] Durch den Entgasungs- bzw. Entkohlungsprozess im metallurgischen Gefäß 4 bzw. im Vakuumgefähzelf 8, durch den der Schmelze 3 Gase entzogen werden, werden aus der nach oben in das Vakuumgefähzelf 8 gesaugten Oberfläche 2 des Schmelze Metallpartikel 1 herausgerissen. Diese Partikel spritzen in einen oberhalb des Badspeigels liegenden Bereich 5, wie es in Fig. 1 angedeutet ist. Die Intensität des Herausreichens von Partikeln 1 aus der Schmelze 3 ist dabei ein Maß für den Ablauf des Prozesses.

[0055] Im metallurgischen Gefäß, bzw. hier im Vakuumgefähzelf 8 befindet sich eine vakuumdicht verschlossene Öffnung 7 in Form eines Beobachtungsstutzens. Durch die Öffnung 7 kann der Bereich 5 zumindest teilweise eingesehen werden. Es ist vorgesehen, dass ein Überwachen, ein Steuern und/oder ein Regeln des Herausspritzens von Metall- bzw. Schmelzpartikeln 1 aus der Oberfläche 2 des schmelzflüssigen Metallbad 3 erfolgt. Weiterhin wird zumindest ein Teil des oberhalb des Badspeigels liegenden Bereichs 5 von einem Erfassungsgerät 6 ausgewertet, wobei das Erfassungsgerät 6 eine physikalische und/oder geometrische Größe erfassen kann, die ein Maß für die Intensität des Herausreißens von Flüssigmutterpartikeln 1 aus dem Bad 3 ist.

[0056] Im Ausführungsbeispiel ist das Erfassungsgerät 6 eine Kamera, die durch den Beobachtungsstutzen 7 den Bereich 5 einsieht, und zwar über einen gewissen Raumwinkel. Aufgenommen wird dabei das Bild, das sich oberhalb der Oberfläche 2 ergibt und das durch die herausgerissenen Schmelzpartikel 1 bestimmt wird.

[0057] Das Erfassungsgerät 6 ist in der Lage, eine physikalische oder geometrische Größe zu messen, die ein Maß für den Ablauf des Entgasungs- und Entkohlungs-Prozesses im Vakuumgefähzelf 8 ist, d. h. des Maßes, in dem Metallpartikel 1 aus der Oberfläche 2 der Schmelze 3 herausgerissen werden.

[0058] Im Ausführungsbeispiel beobachtete die Kamera 6 die Projektionsfläche der herausgerissenen Flüssigmutterpartikel 1 in dem von ihr erfassten Bildausschnitt. Je größer die Projektionsfläche der Partikel 1 ist, desto stärker ist die Reaktion. Demgemäß kann über ein Regelsystem auf die Intensität des Prozesses unmittelbar Einfluss genommen werden.

[0059] Dies ist in Fig. 2 schematisch gezeigt. Dort ist – allerdings nur sehr schematisch – eine Regelleinrichtung dargestellt, mit der die Regelung der Intensität des Prozesses in der Anlage gemäß Fig. 1 erfolgen kann.

[0060] Die Kamera 6, die, am Beobachtungsstutzen 7 den Prozess beobachtet, liefert das aufgenommene Signal an eine Bilderkennungseinheit 11, die die ebenfalls erwähnte Bild-Auswertung vornimmt. Das sich ergebende Maß Iₕ fₕ für die Ist-Intensität des Herauscheidens von Partikeln 1 aus der Schmelze 3 wird einem Regler 9 zugeleitet, der auch mit einem Sollwert für die Intensität Iₕ fₕ versorgt wird. Der Sollwert ist so gewählt, dass einerseits eine hinreichende Reaktion vorliegt, andererseits jedoch die metallurgische Anlage nicht übermäßig mit Metallpartikeln 1 bespritzt wird.

[0062] Je höher das Vakuum im Vakuumgefähzelf 8 ist, desto größer ist die Geschwindigkeit des Prozesses im Gefäß 8. Damit besteht die Möglichkeit, in der er-
lauterten Weise Einfluss auf den Entgasungs- und
Entkohlungsprozess zu nehmen und die Reaktions-
geschwindigkeit der Entgasung in einem optimalen
Bereich zu halten. Dies erfolgt – wie aus der darge-
legten Vorgehensweise sofort hervorgeht – anhand
schnell messbarer und regelbarer Parameter, so
 dass die Regelung keine Totzeit hat.

[0063] Zwischen bzw. hinter den Dampfstrahl-Vaku-
umpumpen 10 sind Kondensatoren 17, 18, 19 ange-
ordnet.

[0064] Um Gas aus dem Prozess näher zu untersu-
chen und seine Zusammensetzung zu bestimmen, ist
neben der an sich bekannten Gasentnahmestelle 20
am Ende der Anlage eine weitere Gasentnahmestel-
le 21 vorgesehen. Hier kann ebenfalls Gas entnom-
men werden, wobei mittels einer oder mehrerer Pum-
pen 22 die entnommene Gasprobe auf Umgeungs-
 druck gebracht werden kann.

[0065] Mit dem vorgeschlagenen Verfahren ist es
möglich, beliebige Metallschmelze hinsichtlich ihrer
Reaktionsgeschwindigkeit bei der Vakuumbehand-
lung zu beurteilen und dann auch entsprechend zu
steuern bzw. zu regeln. Es ist bevorzugt für das
RH-Verfahren (Umlaufgasverfahren, d. h. Entgasung
und Entkohlung im Vakuum-Umlauf-Ver-
fahren) geeignet, kann beispielsweise aber gleicher-
maßen auch bei der Behandlung von Schmelzen in
Vakuumtranks eingesetzt werden. Ferner kann das
Verfahren auch beim DH-Verfahren oder beim RE-
DA-Verfahren sowie bei anderen Verfahren einge-
setzt werden.

Bezugszeichenliste

1	Metallpartikel
2	Oberfläche der Schmelze
3	Metallbad
4	metallurgisches Gefäß
5	oberhalb des Badspiegels liegender Bereich
6	Erfassungsgerät (Kamera)
7	vakuumdicht verschlossene Öffnung (Beob-
achtungsstutzen)	
8	angrenzendes Anlagenteil (Vakuumgefä ß)
9	Regelung/ Regler
10	Mittel zum Erzeugen eines Unterdrucks
 (Dampfstrahl-Vakumpumpen) |
11	Bilderkennungseinheit
12	Tauchrohr
13	Tauchrohr
14	Unterdruckleitung
15	Eingabestutzen
16	Stelle der Argon-Eingabe
17	Kondensator
18	Kondensator
19	Kondensator
20	Gasentnahmestelle
21	Gasentnahmestelle
I_{st}	Ist-Intensität
I_{soll}	Soll-Intensität

Patentansprüche

1. Verfahren zum Überwachen, Steuern und/oder
Regeln des Herausspritzens von Metallpartikeln (1)
aus der Oberfläche (2) eines schmelzflüssigen Meta-
lbades (3), wobei sich die Metallschmelze in einem
metallurgischen Gefäß (4) befindet und wobei in dem
Gefäß (4) ein Unterdruck erzeugt wird, dadurch ge-
kenzeichnet, dass zumindest ein Teil des oberhalb
des Badspiegels liegenden Bereichs (5) von einem
Erfassungsgerät (6) beobachtet wird, wobei durch
das Erfassungsgerät (6) eine physikalische und/oder
gemetrische Größe erfasst wird, die ein Maß für die
Intensität (I_{st}) des Herausreißens von Flüssigmetall-
partikeln (1) aus dem Bad (3) ist.

2. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, dass die erfasste Größe die Lichtstärke in
einem erfassten Raumwinkel ist.

3. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, dass die erfasste Größe ein Muster des
Spritzbildes der herausergossenen Flüssigmetall-
partikel (1) in einem erfassten Bildausschnitt ist.

4. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, dass die erfasste Größe die Projektionsflä-
che der herausergossenen Flüssigmetallpartikel (1) in
einem erfassten Bildausschnitt ist.

5. Verfahren nach Anspruch 4, dadurch gekenn-
zeichnet, dass die Geschwindigkeit der Änderung der
Projektionsfläche der herausergossenen Flüssigmet-
allpartikel (1) in einem Bildausschnitt erfasst wird.

6. Verfahren nach Anspruch 4, dadurch gekenn-
zeichnet, dass die Größenverteilung der Projektions-
fläche der herausergossenen Flüssigmetallpartikel (1) in
einem Bildausschnitt erfasst wird.

7. Verfahren nach einem der Ansprüche 2 bis 6,
dadurch gekennzeichnet, dass die Lichtstärke, das
Muster des Spritzbildes, die Geschwindigkeit der
Partikel oder die Projektionsfläche von einer Kamera
(6) erfasst wird.

8. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, dass die erfasste Größe die Temperatur ist.

9. Verfahren nach Anspruch 8, dadurch gekenn-
zeichnet, dass die erfasste Größe die Wärmestrah-
lung des beobachteten Bereichs ist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die physikalische oder geometrische Größe durch eine vakuumdicht verschlossene Öffnung (7), insbesondere durch einen Beobachtungsstutzen, im metallurgischen Gefäß (4) und/oder in einem angrenzenden Anlagenteil (8) hindurch erfasst wird.

11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die erfasste physikalische oder geometrische Größe einer Steuerung oder Regelung (9) zugeleitet wird, die so eine Einflussnahme auf einen Prozessparameter nimmt, dass die erfasste Größe bei einem vorgegebenen Wert oder innerhalb eines vorgegebenen Wertebereichs liegt.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der beeinflusste Prozessparameter der Wert des Unterdrucks im metallurgischen Gefäß und/oder die Änderungsgeschwindigkeit des Unterdrucks ist.

17. Vorrichtung zum Überwachen, Steuern und/oder Regeln des Herauspritzens von Metallpartikeln (1) aus der Oberfläche (2) eines schmelzflüssigen Metallbades (3), die ein metallurgisches Gefäß (4) umfasst, in dem sich eine zu behandelnde Metallschmelze (3) befindet, sowie Mittel (10) zum Erzeugen eines Unterdrucks im metallurgischen Gefäß (4), insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Vorrichtung weiterhin ein Erfassungsgerät (6) aufweist, das zur Auswertung zumindest eines Teils des oberhalb des Badspiegels (2) liegenden Bereichs (5) ausgebildet und geeignet ist, wobei das Erfassungsgerät (6) zur Erfassung einer physikalischen und/oder geometrischen Größe geeignet ist, die ein Maß für die Intensität (I_{av}) des Herausreißens von Flüssigmetalldropkernen (1) aus dem Bad ist.

18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass das Erfassungsgerät (6) ein Lichtstärkemesser ist.

19. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass das Erfassungsgerät (6) eine Kamera ist, die mit einer Bilderkennungsseinheit (11) in Verbindung steht.

20. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass das Erfassungsgerät (6) ein Thermometer ist, insbesondere ein Strahlungsthermometer.

21. Vorrichtung nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, dass das metallurgische Gefäß (4) und/oder ein angrenzendes Anlagenteil (8) eine vakuumdicht verschlossene Öffnung (7), insbesondere einen Beobachtungsstutzen, aufweist.

22. Vorrichtung nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, dass sie weiterhin eine Steuerung oder Regelung (9) aufweist, die zur Einflussnahme auf einen Prozessparameter ausgebildet ist.

23. Verfahren nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, dass das metallurgische Gefäß (4) und/oder ein angrenzendes Anlagenteil (8) ein Entnahmemittel zur Entnahme von Gas aus dem Inneren des metallurgischen Gefäßes aufweist.

Es folgen 2 Blatt Zeichnungen