Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: **Verfahren zum Betreiben einer Brennkraftmaschine**

Beschreibung

[0003] Im Leerlaufbetrieb des Motors wird für schnelle Regeleingriffe der Motorsteuerung im Rahmen der Leerlaufregelung bewusst eine so genannte Momentenreserve vorgehalten, indem der Zündwinkel um einige Grad Kurbelwinkel vom motorischen Wirkungsgradoptimum entfernt eingestellt wird, um diesen zyklusabgelaufständig schnell verstellen und damit Moment aufbauen zu können. Die Motoraufwurfe kann über die Drehzahlentschwankung der Kurbelwelle auf Basis der Vermessung des 60-2 Geberrades auf der Kurbelwelle bestimmt werden.

[0005] Der Erfindung liegt die Aufgabe zugrunde, den Aufbau einer Momentenreserve hinsichtlich Laufruhe und Kraftstoffverbrauch zu verbessern.

[0006] Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der o. g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhaft Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.

[0007] Dazu ist es bei einem Verfahren der o. g. Art erfindungsgemäß vorgesehen, dass im Leerlauf und/oder Schwachlastbetrieb ausgehend vom Wirkungsgradoptimum der Zündwinkel in Richtung Aufbau einer Momentenreserve solange verstellt wird, bis eine Laufruhe der Brennkraftmaschine ein vorbeistimmtes Laufruhelimit unterschreitet, wobei der so erreichte Zündwinkel als erste Zündwinkelgrenze abgezeichnet wird, und anschließend der Zündwinkel in Richtung weiterer Erhöhung der Momentenreserve solange verstellt wird, bis die Laufruhe der Brennkraftmaschine das vorbestimmte Laufruhelimit wiede überschreitet, wobei der so erreichte Zündwinkel als zweite Zündwinkelgrenze abgezeichnet wird, wobei bei nachfolgenden Verstellungen des Zündwinkels zum Aufbau einer Momentenreserve im Leerlauf und/oder Schwachlastbetrieb die Zündwinkelstellung auf Werte zwischen der ersten und zweiten Zündwinkelgrenze begrenzt werden.

[0011] Die Erfindung wird in den Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in

[0012] Fig. 1 ein schematisches Ablaufdiagramm des erfindungsgemäßen Verfahrens und

[0013] Fig. 2 eine graphische Darstellung des Ablaufs des erfindungsgemäßen Verfahrens.

[0014] Fig. 1 und Fig. 2 veranschaulichen schematisch den Ablauf des erfindungsgemäßen Verfahrens. Hierbei ist in Fig. 2 auf einer horizontalen Achse 10

[0015] Wie in Fig. 1 schematisch dargestellt und in Fig. 2 zusätzlich graphisch veranschaulicht, werden bei einer Steuergerätefunktion 28 "Verstellung Zündwinkel bis Laufruhe-Grenzwert bei Zündwinkelgrenze 1 und 2 erreicht" die erste und zweite Zündwinkelgrenze 24, 26 ermittelt. Zu diesem Zweck wird der Steuergerätefunktion 28 aus einem Block 30 "Laufruhe, Zündwinkel etc." ein momentaner Zündwinkel 10 sowie ein Wert des ersten Graphen 12 bzw. des zweiten Graphen 14 zugeführt, welcher eine Laufruhe der Brennkraftmaschine bei dem momentanen Zündwinkel 10 repräsentiert. Zusätzlich wird der Steuergerätefunktion 28 aus dem Block 32 "abgelegtes Laufruhekriterium" ein Wert für die vorbestimmte Laufruhegrenze 20 zugeführt. Von der Steuergerätefunktion 28 wird der Zündwinkel 10 in Richtung eines Aufbaus einer Momentenreserve; d. h. Erhöhung des Motormomentes 16, verstellen, bis die Laufruhe gemäß erstem Graphen 12 den vorbestimmten Laufruhegrenzwert 20 unterschreitet. Dies ist bei dem durch die erste vertikale Linie 24 gekennzeichneten Zündwinkel 10 der Fall und dieser Zündwinkel 10 bei der ersten vertikalen Linie 24 wird als erste Zündwinkelgrenze 24 abgespeichert. Danach wird von der Steuergerätefunktion 28 der Zündwinkel 10 weiter in Richtung Erhöhung des Motormomentes 16, d. h. weiterer Aufbau einer Momentenreserve, verstellen, bis die Laufruhe gemäß erstem Graphen 12 den vorbestimmten Laufruhegrenzwert 20 wieder überschreitet. Dies ist bei dem durch die zweite vertikale Linie 26 gekennzeichneten Zündwinkel 10 der Fall und dieser Zündwinkel 10 bei der zweiten vertikalen Linie 26 wird als zweite Zündwinkelgrenze 26 abgespeichert.

[0016] In einem nachfolgenden Schritt 34 "Zündwinkelgrenzen in Steuergerät abseichern" werden erste und zweite Zündwinkelgrenze 24, 26 in dem Steuergerät der Brennkraftmaschine abgespeichert.

[0017] Diese Zündwinkelgrenzen 24, 26 werden ab sofort für alle nachfolgenden Zündwinkelverstellungen zum Aufbau einer Momentenreserve als oberer und unterer Grenzwert verwendet und begrenzen dadurch die Zündwinkelverstellung für die Momentenreserve. Dies stellt sicher, dass bei der Zündwinkelverstellung zum Aufbau einer Momentenreserve die Laufruhe der Brennkraftmaschine nicht übermäßig verschlechtert wird.

[0019] Anhand beispielsweise der gemessenen Drehzahlschwankung der Kurbelwelle als Wert für die Laufruhe der Brennkraftmaschine ist die Motorsteuerung erfindungsgemäß in der Lage, für jeden Motor individuell im Leerlauf- und/oder Schwachlastbetrieb die erste Zündwinkelgrenze 24 und die zweite Zündwinkelgrenze 26 so festzulegen, dass der zuvor im Steuergerät abgelegte Laufruhe-Grenzwert 20 nicht überschritten wird. Innerhalb dieser Zündwinkelgrenzen 24, 26 kann die Momentenreserve 22 durch die Lage des Zündwinkels 10 eingestellt werden, ohne dass die Motorlaufruhe (12 bzw. 14) inakzeptabel hohe Werte einnimmt.

[0020] Zeigt ein Motor infolge von Bauteiltoleranzen oder über die Motorlebenszeit ein anderes Laufruheverhalten, wie beispielsweise mit dem zweiten Graphen 14 veranschaulicht, so kann die MOTORSTEUERUNG, wie oben beschrieben, die Zündwinkelgrenzen 24, 26 neu adaptieren. Dies gewährleistet einerseits die gewünschte Motorlaufleistung beim Aufbau der Momentenreserve durch Verlagerung des Zündwinkels 10 und andererseits kann dadurch auch der Kraftstoffverbrauch 18 minimiert werden, wenn durch die adaptierten Zündwinkelgrenzen 24, 26 der Zündwinkel 10 wirkungsgradoptimale eingestellt werden kann.
ZITATE ENTHALTEN IN DER BESCHREIBUNG

Zitierte Patentliteratur

- DE 102004044808 A1 [0004]
Patentansprüche

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bestimmung der ersten und zweiten Zündwinkelgrenze erneut durchlaufen wird, wenn seit der letzten Bestimmung eine vorbestimmte Betriebszeit der Brennkraftmaschine verstrichen ist und/oder wenn eine vorbestimmte Anzahl von Leerlaufphasen bzw. Schwachlastphasen durchlaufen wurde und/oder wenn sich Umgebungsbedingungen, insbesondere Umgebungsdruck und/oder Umgebungstemperatur, über einen vorbestimmten Schwellewert hinaus verändert haben.

3. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste und zweite Zündwinkelgrenze in einem Steuergerät der Brennkraftmaschine abgespeichert werden.

Es folgen 2 Blatt Zeichnungen