Patentschrift

(21) Aktenzeichen: 197 55 964.6
(43) Offenlegungstag: 18.03.1999
(45) Veröffentlichungstag der Patenterteilung: 26.01.2006

(73) Patentinhaber: Nissan Motor Co., Ltd., Yokohama, Kanagawa, JP

(74) Vertreter: Grünecker, Kinkeldey, Stockmair & Schwanhäusser, 80538 München

(54) Bezeichnung: Verfahren zum Umformen eines plattenförmigen Rohteils, plattenförmiges Rohteil zur Verwendung bei einem Umformvorgang und Erzeugnis, das durch Umformen des plattenförmigen Rohteils hergestellt ist

(57) Hauptspruch: Verfahren zum Umformen eines plattenförmigen Rohteils (10; 210; 300) zu einem Erzeugnis (400; 500), das wenigstens ein Wandteil mit reduzierter Dicke aufweist, dadurch gekennzeichnet, dass vor dem Umformen das Rohteil (10; 210; 300) zumindest in Bereichen, in denen das Rohteilmaterial während des Umformvorgangs fließt und der Umformvorgang zu einer reduzierten Wandstärke des Erzeugnisses (400; 500) im Vergleich zur Wandstärke des Rohteils (10; 210; 300) führt, mit zumindest zwei Schweifbahnen (12; 212; 312) versehen wird, die sich zumindest im Wesentlichen in Richtung des während des Umformvorgangs auftretenden Materialfließens erstrecken.
Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Umformen eines plattenförmigen Rohteils und ein plattenförmiges Rohteil zur Verwendung bei einem Umformvorgang sowie ein Erzeugnis, das durch Umformen des plattenförmigen Rohteils hergestellt ist.

Stand der Technik

[0003] In der oben beschriebenen Technik werden die parallelen Schweißbahnen ohne Rücksicht auf den Metallfluss angeordnet, der verursacht wird, wenn das Rohteil umgeformt wird. Es ist wahrscheinlich, dass die Verarbeitungsfähigkeiten für das Tiefziehen mit der derartigen im Stand der Technik beschriebenen Anordnung der Schweißbahnen beeinträchtigt werden, das Rohteil einem Tiefziehen mit einer Schrumpfflanschbildung unterzogen wird.

[0004] Es ist allgemein bekannt, Schweißbahnen mit Hilfe eines Laserstrahls auf einem ebenen Metall-Rohteil anzuordnen, um das ebene Metall-Rohteil zu verstärken.

Aufgabenstellung

[0007] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Umformen eines plattenförmigen Rohreits, ein plattenförmiges Rohteil zur Verwendung beim Umformvorgang und ein Erzeugnis, das durch Umformen des plattenförmigen Rohreits hergestellt ist, anzugeben, wobei Risse in der Wand des fertiggestellten Erzeugnisses vermieden werden und ein gutes äußeres Erscheinungsbild sichergestellt wird.

[0008] Diese Aufgabe wird durch die in den Patentansprüchen 1, 19 und 27 angegebenen Merkmale gelöst.

Ausführungsbeispiel

[0011] Anhand von in den Zeichnungen dargestellten Ausführungsbeispielen wird die Erfindung im Folgenden näher erläutert. Darin zeigen:

[0012] Fig. 1 eine Draufsicht eines ebenen Rohreits, das in einer ersten Ausführungsform der vorliegenden Erfindung verwendet wird.

[0013] Fig. 2 eine schematische Querschnittansicht einer Vorrichtung zum Tiefziehen des Rohreits von Fig. 1, die eine Form, einen Stempel und ein durch einen Niederhalter gehaltenes Rohrteil zeigt.

[0014] Fig. 3 eine vergrößerte Querschnittansicht entlang der Linie 3-3 von Fig. 1.

[0015] Fig. 4 ein Kurvendiagramm, das die Beziehung zwischen der Position der Außennenden der Schweißbahnen und dem Ziehverhältnis des Rohreits zeigt.

[0016] Fig. 5 eine ähnliche Ansicht wie Fig. 1, die aber einen in einer zweiten Ausführungsform der vorliegenden Erfindung verwendetes Rohrteil zeigt.

[0017] Fig. 6 ein Kurvendiagramm, das die Beziehung zwischen dem Abstand zwischen den Schweißbahnen und einem Grenzziehverhältnis des Rohreits zeigt.

[0018] Fig. 7 ein erläuterndes Diagramm einer dritten Ausführungsform der vorliegenden Erfindung, das ein plattenförmiges Rohrteil und eine Vorrichtung zum Tiefziehen des Rohreits zeigt.
[0019] Fig. 8 eine schematische Teilraufsicht einer in einer vierten Ausführungsform der vorliegenden Erfindung verwendeten Form,

[0020] Fig. 9 eine schematische Teilraufsicht eines in der vierten Ausführungsform verwendeten Rohsteils,

[0021] Fig. 10 ein Kurvendiagramm, das die Beziehung zwischen dem Abstand der Schweißbahnen zueinander und dem Verhältnis der Dicke einer Seitenwand des fertigen Erzeugnisses zur ursprünglichen Dicke des Rohsteils zeigt,

[0022] Fig. 11 ein Kurvendiagramm, das die Beziehung zwischen der Länge der Schweißbahnen des fertigen Erzeugnisses und dem Verhältnis der Dicke einer Seitenwand zur ursprünglichen Dicke des Rohsteils zeigt,

[0023] Fig. 12 eine vergrößerte Teilquerschnittansicht der Vorrichtung und des Rohsteils der dritten Ausführungsform entlang der im Rohteil gebildeten Schweißbahnen,

[0024] Fig. 13 ein Kurvendiagramm, das die Beziehung zwischen der Breite der Schweißbahnen und dem Verhältnis der Ziehfestigkeit der Schweißbahnen gegenüber der des Basismetalls des Rohsteils zeigt,

[0025] Fig. 14 ein Kurvendiagramm, das die Beziehung zwischen der Einbrandtiefe der Schweißbahnen und dem Verhältnis der Ziehfestigkeit der Schweißbahnen gegenüber der des Basismetalls des Rohsteils zeigt,

[0026] Fig. 15 eine Ansicht von unten eines durch die erste Ausführungsform des Verfahrens der vorliegenden Erfindung fertiggestellten Erzeugnisses,

[0027] Fig. 16 eine Querschnittansicht entlang der Linie 16-16 von Fig. 15.

[0028] Fig. 17 ist eine Teilansicht von unten eines durch die dritte Ausführungsform des Verfahrens der vorliegenden Erfindung gebildeten Erzeugnisses, und

[0029] Fig. 18 eine Teilquerschnittansicht entlang der Linie 18-18 von Fig. 17. Mit Bezug auf Fig. 1 bis Fig. 18 werden im folgenden bevorzugte Ausführungsformen des Verfahrens zum Pressen eines plattenförmigen Rohsteils zu einem Erzeugnis mit einem Flansch, ein durch das Verfahren fertiggestelltes Erzeugnis und ein für das Tiefziehen in Übereinstimmung mit der vorliegenden Erfindung ausgebildeter verstärktes Rohteil erläutert.

[0030] Wie in Fig. 15 und Fig. 16 gezeigt, weist das fertiggestellte Erzeugnis 400 eine Form auf, die einem Napf ähnlich ist. Das fertiggestellte Erzeugnis 400 ist aus einem plattenförmigen Metall-Rohteil hergestellt und umfasst eine kreisförmige Bodenwand 402, eine mit der Bodenwand verbundene zylindrische Seitenwand 404 und eine Bogenwand 406, die sich zwischen der Bodenwand 402 und der Seitenwand 404 erstreckt. Die Seitenwand 404 erstreckt sich im Wesentlichen vertikal zu der Bodenwand 402. Die Bogenwand 406 erstreckt sich winkelig von der gebogenen Peripherie der Bodenwand 402 radial nach außen, wobei sie die Bodenwand 402 und die Seitenwand 404 miteinander verbindet. Ein ringförmiger Flansch 408 erstreckt sich von der Seitenwand 404 winkelig und radial nach außen. Es sind wenigstens zwei in Fig. 15 und Fig. 16 mit dem Bezugszeichen 12 angegebene Schweißbahnen vorgesehen, um einen in seiner Dicke reduzierten Teil des fertiggestellten Erzeugnisses 400 zu verstärken, der sich über die gesamte Bogenwand 406, die Seitenwand 404 und die Bodenwand 402 erstreckt. Der in seiner Dicke reduzierte Teil wird durch die während des Tiefziehverfahrens am ebenen Rohteil angewendeten Ziehkraft verursacht. Jede Schweißbahn 12 wird unter Verwendung einer geeigneten Wärmequelle mit hoher Energieleistung gebildet, zum Beispiel unter Verwendung eines Laserstrahls, eines Elektronenstrahls oder ähnlichem. Dabei wird ein Teil des Rohsteils einem derartigen Strahl ausgesetzt, durch die Hitze geschmolzen und darauf durch Selbstkühlung gehärtet, um eine Schweißbahn 12 zu bilden, die eine größere Härte als der übrige Teil 18 des Basismaterials aufweist. Auf diese Weise sind die Schweißbahnen 12 in das Rohteil eingebracht.

[0032] Insbesondere erstrecken sich in der in Fig. 15 und Fig. 16 gezeigten Ausführungsform acht lineare Schweißbahnen 12 radial vom Zentrum der Bodenwand 402 über die Bogenwand 406 und die
Seitenwand 404. Jede der acht Schweißbahnen 12 weist ein Ende im Flansch 408 und ein entgegengesetztes Ende in der Bodenwand 402 auf. Diese Schweißbahnen 12 sind in das Rohteil eingebraucht und erstrecken sich, wie in Fig. 16 gezeigt, von einer Seite des Rohteils zur anderen. Die Schweißbahnen 12 sind nicht auf den durchgehenden Typ dieser besonderen Ausführungsform beschränkt, sondern können auch von einem nicht durchgehenden Typ sein, der eine Einbrandtiefe aufweist, die die reduzierte Dicke des fertiggestellten Erzeugnisses 400 ausreichend verstärken kann.

[0033] Die oben erläuterte Anordnung der Schweißbahnen 12 dient dazu, ein Reifen des fertiggestellten Erzeugnisses 400 zu verhindern, das durch einen Wandteil mit reduzierter Dicke verursacht wird, und um das fertiggestellte Erzeugnis 400 mit einem guten Erscheinungsbild zu versehen.

[0034] Mit Bezug auf Fig. 1 bis Fig. 3 wird das Verfahren zum Umformen eines plattenförmigen Roh- teils zu einem, wie in Fig. 15 und Fig. 16 gezeigten, fertigen Erzeugnis 400 erläutert.

[0037] Insbesondere sind in der vorliegenden, in Fig. 1 gezeigten, Ausführungsform acht lineare Schweißbahnen 12 derart angeordnet, dass sie sich radial vom Zentrum 14 des Rohteils 10 nach außen erstrecken und vor der Peripherie 16 des Rohteils 10 enden. In dem ersten Verfahrensschritt werden die acht Schweißbahnen 12 mit auf dem Umfang gleichen Abständen zueinander in einem Sektor des Rohteils 10 angeordnet, der im vorbestimmten Punkt im Zentrum einen Zentrumswinkel von 180 Grad aufweist.

rende PB des Stempels P in Kontakt gebracht wird.

[0040] Die Schweißbahnen 12 sind, wie in Fig. 3 gezeigt, tief in das Rohteil 10 eingebrannt. Die Schweißbahnen 12 weisen jeweils eine Länge L, wie in Fig. 1 gezeigt, sowie eine Breite W und eine Tiefe T, wie in Fig. 3 gezeigt, auf. Die Länge L der Schweißbahnen 12 ist variabel so gewählt, dass die inneren Enden der Schweißbahnen 12 im dritten vorbestimmten Bereich 20 des Rohteils 10 und die äußeren Enden im zweiten vorbestimmten Bereich 24 mit einem radialen Abstand zur Peripherie 16 des Rohteils 10 angeordnet sind. Vorzugsweise liegt die Breite W der Schweißbahnen 12 in einem Bereich von 0,5 mm bis 2,0 mm, wobei die Tiefe T der Einbrandtiefe vorzugsweise mehr als die Hälfte der Dichke des Rohteils 10 ausmacht.

[0041] Dann wird das plattenförmige Rohteil 10 mit dem verstärkten Teil, der durch die wenigstens zwei Schweißbahnen 12 gebildet ist, für die folgenden Schritte im Verfahren vorbereitet. Mit der Anordnung der Schweißbahnen 12 wird die Zugverteilung im Rohteil 10 beim Tiefziehen in der Nähe der Schweißbahnen 12 geändert. Das plattenförmige Rohteil 10 weist deshalb eine größere Härte und einen höheren Widerstand gegen die Reduktion der Dicke auf, die durch den Ziehvorgang verursacht wird.

[0042] Fig. 2 zeigt eine Vorrichtung zum Umformen des Rohteils 10 zu einem fertigen Erzeugnis 400, wie in Fig. 15 und Fig. 16 gezeigt. Die Vorrichtung enthält eine Form D gegenüber dem Stempel P sowie einen zwischen diesen angeordneten Niederhalter H. Der Stempel P weist eine zylindrische Form mit einer zentralen Achse x auf und ist dafür ausgelegt in der Richtung der Achse bewegt zu werden. Die Form D weist eine zylindrische Höhlung DC auf, die derart konfiguriert ist, dass sie den Stempel P aufnimmt. Der Niederhalter H weist ein zentrales Loch HB auf, das die Bewegung des Stempels P in und aus der Höhlung DC der Form D zulässt. In diesem Schritt wird das Rohteil 10 mit dem Schweißbahnen 12 auf einer vorbestimmten Position auf der Fläche DF der Form D platziert, wobei das Zentrum 14 des Rohteils 10 mit dem zentralen Achse x des Stempels P ausgerichtet ist.

[0043] Nach dem Platzieren des Rohteils 10 auf der Form D wird der Niederhalter H gegen das auf der Form F platzierte Rohteil 10 gedrückt, um die Peripherie 16 des Rohteils 10 einzuspannen.

[0044] Nach dem Drücken des Niederhalters H gegen das Rohteil 10 wird der Stempel P in die Höhlung DC der Form D bewegt, um das Rohteil 10 entlang der Oberfläche des Stempels P zu ziehen und einen ringförmigen Flansch entlang der Peripherie 16 des Rohteils 10 zu bilden, wobei das Rohteil 10 an der Peripherie 16 gehalten wird.

[0045] Wenn sich der Stempel P in diesem Schritt in der Höhlung DC der Form D bewegt, wird das Rohteil 10 durch den Stempel P in die Form eines Teils Stempels P gezwungen, der das Rohteil 10 kontaktiert. Dabei wird das Rohteil 10 einer Ziehkraft ausgesetzt, die den Metallfluss in der radialen Richtung des Rohteils 10 verursacht. Das mit den wenigsten zwei Schweißbahnen 12 versehene Rohteil 10 wird weiter durch den Metallfluss beeinflusst, so dass das Rohteil 10 eine geringere durch den Metallfluss verursachte Reduktion der Dicke erfährt. Wenn der Schritt zum Bewegen des Stempels abgeschlossen ist, ist das in Fig. 15 und Fig. 16 gezeigte Erzeugnis 400 mit einem Flansch fertiggestellt.

[0046] Fig. 5 zeigt ein plattenförmiges Rohteil 110 in Übereinstimmung mit einer zweiten Ausführungsform der vorliegenden Erfindung, das sich bezüglich des Abstandes, den die Schweißbahnen 12 am Umfang zueinander aufweisen, von der ersten Ausführungsform unterscheidet. Dabei bezeichnen gleiche Bezugsscheibe identische Teile, weshalb auf eine erneute Beschreibung dieser Teile verzichtet wurde.

[0047] Wie in Fig. 5 gezeigt, ist das plattenförmige Rohteil 110 aus einem Metallblech hergestellt und weist sechs lineare auf ihm ausgebildete Schweißbahnen 12 auf. Diese Schweißbahnen 12 sind am Umfang durch einen in Fig. 5 mit Q angegebenen Abstand am äußeren Schulterkontaktbereich 30 zueinander angeordnet, wobei dieser Abstand größer ist als der Abstand in der ersten in Fig. 1 gezeigten Ausführungsform. Der vorbestimmte Abstand liegt im Bereich zwischen 5 mm und 30 mm. Das plattenförmige Rohteil 110 mit den in ihm ausgebildeten Schweißbahnen 12 kann in denselben mit Bezug auf die erste Ausführungsform erläuterten Verfahrensschritten verwendet werden.

[0049] Im Folgenden wird in Übereinstimmung mit einer dritten Ausführungsform der vorliegenden Erfindung das fertiggestellte Erzeugnis 500 erläutert.

[0050] Das fertiggestellte Erzeugnis 500 ist ein aus einem hochfesten Stahlblech hergestelltes plattenförmiges Rohteil. Wie in Fig. 17 und Fig. 18 dargestellt, umfasst das fertiggestellte Erzeugnis 500 eine Bodenwand 502 mit einer gebogenen Peripherie. Die Bodenwand 502 weist eine Form auf, bei der wenigstens ein Eckbereich eine gebogene Peripherie bildet. Die Bodenwand 502 kann eine polygonformige Form mit

[0051] Die wenigstens zwei Schweißbahnen 212 werden durch eine Wärmequelle mit hoher Energie dicht gebildet und weisen jeweils eine Härte auf, die größer ist als die der übrigen Teile 18, wie mit Bezug auf die erste Ausführungsform beschrieben. Die Bogenwand 506 ist in ihrer Dicke reduziert, da sie der im Tiefziehvorgang verursachten Ziehkraft am meisten ausgesetzt ist. Die Seitenwand 504 und die Bodenwand 502 sind ebenfalls in ihrer Dicke reduziert, wobei sie aber weniger durch die Ziehkraft beeinflusst werden als die Bogenwand 506. Die angeordneten Schweißbahnen 212 verstärken den Wandteil des Erzeugnisses 500, der eine reduzierte Dicke aufweist. Weiterhin kann mit der Anordnung der Schweißbahnen 212 verhindert werden, dass die Seitenwand 504 reißt, wenn das Rohrteil beim Tiefziehen einer erhöhten Ziehkraft ausgesetzt wird, um Runzeln zu beseitigen. Runzeln können beim Tiefziehen aufgrund der plastischen Verformungsgeschwindigkeit des hochfesten Stahlblechs des Rohrteils verursacht werden, die niedriger ist als die plastische Verformungsgeschwindigkeit eines gewöhnlichen Stahlblechs. Mit der Anordnung der Schweißbahnen 212 kann auch die während des Tiefziehens auftretende Runzelbildung beschränkt werden.

[0052] Mit Bezug auf Fig. 7 und Fig. 12 wird im Folgenden das Verfahren zum Umformen eines plattenförmigen Rohrteils 210 zu dem oben beschriebenen fertiggestellten Erzeugnis 500 der dritten Ausführungsform erläutert. Fig. 7 und Fig. 12 zeigen das plattenförmige Rohrteil 210 und eine Vorrichtung zum Herstellen desselben. In Fig. 7 ist der Niederhalter der übersichtlicheren Darstellung des Verfahrens halber nicht gezeigt. Das Rohrteil 210 wird von oben bestrachtet.

[0053] Wie in Fig. 7 gezeigt, weist das Rohrteil 210 eine Form mit wenigstens einer Ecke auf. Das Rohrteil 210 ist, wie oben erläutert, aus einem hochfesten Stahlblech hergestellt. Der Stempel P weist die Form einer Säule auf, wobei der Bodenbereich PB mit wenigstens einer gebogenen Ecke ausgebildet ist. Der Stempel P kann allgemein eine prismatische Form aufweisen, wobei der Bodenoberflächenbereich PB mit einer Vielzahl von gebogenen Ecken ausgebildet ist. Der gebogene Oberflächenbereich PR des Stempels P ist mit der gebogenen Ecke verbunden. Die Höhlung DC der Form D ist ähnlich wie der Stempel P konfiguriert.

[0056] Der erste Verfahrensschritt dieser Ausführungsform ist bis auf die oben erläuterten Merkmale demjenigen der ersten Ausführungsform ähnlich.

[0060] Im Folgenden wird ein Verfahren in Übereinstimmung mit einer vierten Ausführungsform der vorliegenden Erfindung mit Bezug auf Fig. 8 und Fig. 9 erläutert, wobei sich dieses Verfahren von der dritten Ausführungsform dadurch unterscheidet, dass das plattenförmige Rohhteil 300 sich aus zwei verscheidenen Stahlblechen 302 und 304 zusammensetzt, die jeweils eine andere Festigkeit und/oder Dicke aufweisen und unter Verwendung eines Laserstrahls zusammengeschweißt sind.

[0061] Fig. 8 zeigt eine Form D, die beim Tiefziehen eines derartigen zusammengeschweißten Rohhteils 300 verwendet wird. Die Form D weist eine Formfläche DF mit einer Neigung auf, die in Abhängigkeit von den Materialeigenschaften des Stahlblechs 302 oder 304 mit dem geringeren Fließverhalten für das Tiefziehen bestimmt wird.

[0062] Fig. 9 stellt das zusammengeschweißte plattenförmige Rohhteil 300 dar, das sich aus einem gewöhnlichen Stahlblech 302 mit gutem Fließverhalten für das Tiefziehen und dem hochfesten Stahlblech 304 mit schlechterem Fließverhalten als dem gewöhnlichen Stahlblech 302 zusammensetzt. In dem Verfahren der vorliegenden Ausführungsform ist der Schritt zum Vorformen der wenigstens zwei linearen Schweißbahnen 312 im Rohhteil 300 demjenigen der dritten Ausführungsform ähnlich, wobei die wenigstens zwei Schweißbahnen 312 jedoch in dem hochfesten Stahlblech 304 entlang von Linien, die sich radial von einem vorbestimmten Punkt im Rohhteil 300 erstrecken, angeordnet sind und eine Länge aufweisen, die einem Drittel der Ziehtiefe entspricht. Die Ziehtiefe ist der Abstand zwischen dem Bodenoberflächenbereich PB des Stempels P, wenn sich dieser während der Bewegung in der Richtung der Achse in der Ebene der Fläche DF befindet, und den anderen Bodenoberflächenbereich PB des Stempels P, wenn sich dieser in der untersten Position derselben Bewegung befindet. Ähnlich wie bei der dritten Ausführungsform, werden die wenigstens zwei Schweißbahnen 312 während des Schrittes zum Ausbilden derselben derart positioniert, dass der Abstand zwischen den Schweißbahnen 312 am äußeren Schulterkontaktabreich 330 des Rohhteils 300, der bei der Bewegung des Stempels P in die Höhlung der Form D mit einem Schulterspannenden RW des Stempels P in Kontakt gebracht wird, im Bereich zwischen 5 mm und 30 mm liegt.

[0063] Mit der Anordnung der Schweißbahnen 312 wird der Unterschied zwischen dem Fließverhalten für das Tiefziehen der beiden Stahlbleche 302 und 304 des Rohhteils 300 reduziert, was dazu dient, die Formbarkeit des fertiggestellten Erzeugnisses, ohne eine Änderung der Materialzusammensetzung, zu verbessern. Weiterhin wird das Rohhteil 300 auch dann zu einem fertigen Erzeugnis ohne Risse geformt, wenn während des Tiefziehens eine Ziekhkraft angewendet werden muss, um die durch die unterschiedlichen Verarbeitungsfähigkeiten für das Tiefziehen verursachten Runzeln zu beseitigen. Die Runzelnbildung wird also eingeschränkt.

Beispiele

[0064] Die vorliegende Erfindung wird im folgenden durch die Darstellung von Beispielen ausführlicher beschrieben, wobei weiterhin auf die beigefügten Zeichnungen Bezug genommen wird. Diese Beispie-
le dienen lediglich der Darstellung der Erfindung und schränken den Schutzumfang der vorliegenden Erfindung keineswegs ein.

Bezugsbeispiel 1

[0065] Es werden fünf plattenförmige Rohsteile getestet, um die Veränderung des Verhältnisses zwischen der Ziehfestigkeit der Schweißbahnen und der Ziehfestigkeit des Basismetalls bei veränderter Breite der Schweißbahnen zu untersuchen.

Bezugsbeispiel 2

[0067] Es werden fünf plattenförmige Rohsteile getestet, um die Veränderung des Verhältnisses zwischen der Ziehfestigkeit der Schweißbahnen und der Ziehfestigkeit des Basismetalls bei veränderter Einbrandtiefe der Schweißbahnen in den Proberohsteilen zu untersuchen.

[0068] Jedes der Proberohsteile wird wie in Beispiel 1 vorbereitet, wobei aber die Schweißbahnen eine konstante Breite von 0,7 mm aufweisen und bezüglich der Einbrandtiefe das Blech variiert. Die derart vorbereiteten rohleistigen Proberohsteile werden bezüglich der Ziehfestigkeit der Schweißbahnen gemessen. Die Testergebnisse sind in Fig. 14 gezeigt. Dann werden die rohleistigen Proberohsteile tiefgezogen, um die fertigen Erzeugnisse herzustellen. Die Erscheinungsbilder der derart hergestellten Erzeugnisse werden visuell geprüft.

[0069] Die Ergebnisse zeigen, dass die Widerstandsfähigkeit gegenüber Rissen und das Fließverhalten beim Tiefziehen des Rohsteils beträchtlich verbessert sind, wenn das Verhältnis der Ziehfestigkeit der Schweißbahnen gegenüber der Ziehfestigkeit des Basismetalls nicht weniger als 5% beträgt.

[0071] Wie weiterhin aus Fig. 13 und Fig. 14 entnommen werden kann, wird ein Verhältnis der Ziehfestigkeiten von nicht weniger als 5% erreicht, wenn die Schweißbahnen eine Breite im Bereich zwischen 0,5 bis 0,2 mm aufweisen und die Einbrandtiefe nicht weniger als die Hälfte der Dicke des Rohsteiles ausmacht.

Beispiel 1

[0072] Ein plattenförmiges Rohsteil der ersten in Fig. 1 gezeigten Ausführungsform wird wie folgt vorbereitet. Es wird eine Schweißbahn mit einem Durchmesser von 92 mm und einer Dicke von 1,0 mm aus einem gewöhnlichen Stahlblech hergestellt, d. h. aus einem Kaltwalzstahlblech SPCC. Acht lineare Schweißbahnen werden unter Verwendung eines CO₂-Gaslaserstrahls mit 3 kW tief in die Blechschicht eingebrannt. Die Schweißbahnen erstrecken sich radial vom Zentrum der Blechschicht aus und enden in einem Bereich der Blechschicht, der sich mit einem radialen Abstand von 5 mm innerhalb der Peripherie erstreckt. Die Schweißbahnen sind mit gleichen Abständen auf dem Umfang zueinander angeordnet und weisen jeweils eine Dicke von 1,0 mm auf.

[0073] Darauf wird das derart vorbereitete ebene Rohsteil unter Verwendung derselben Vorrichtung wie in Fig. 2 tiefgezogen, wobei die Vorrichtung einen Stempel mit einem Durchmesser von 40 mm und einem Stempelradius von 8 mm aufweist, die Form auf einem Halbkreis mit einem Durchmesser von 44 mm und einem Formradius von 10 mm aufweist, und wobei der Niederhalter das Rohsteil mit einem Druck von 1,0 Tonnen einspannen kann. Das fertige Erzeugnis wird unter den vorstehend genannten Bedingungen hergestellt. Das Erscheinungsbild des auf diese Weise hergestellten Erzeugnisses wird visuell geprüft.

[0074] Als Ergebnis lässt sich feststellen, dass das fertiggestellte Erzeugnis ein gutes Erscheinungsbild ohne Risse aufweist.

Vergleichsbeispiel 1

[0075] Ein plattenförmiges Rohsteil wird in der in Beispiel 1 beschriebenen Weise vorbereitet, wobei aber keine Schweißbahn in dem Rohsteil gebildet ist. Das derart vorbereitete Rohsteil wird unter den oben in Beispiel 1 beschriebenen Bedingungen tiefgezogen, um das fertige Erzeugnis zu bilden. Das Erscheinungsbild des auf diese Weise hergestellten Erzeugnisses wird visuell geprüft.

[0076] Als Ergebnis lässt sich feststellen, dass das fertiggestellte Erzeugnis kein gutes Erscheinungsbild aufweist.

Beispiel 2

[0077] Ein plattenförmiges Rohsteil der ersten Ausführungsform wird in der in Beispiel 1 beschriebenen
Weise vorbereitet, wobei aber die Blechscheibe einen Durchmesser von 96 mm und eineDicke von 0,7 mm aufweist und aus einem hochfesten Blechstahl hergestellt ist, d.h. aus einem Kaltwalzblechstahl SAPH 38 entsprechend JIS G3113-1990 mit einer Ziehfestigkeit von 38kp/mm², und wobei sich die Schweißbahnen radial von einem Zentrum 14 der Blechscheibe zu einem Bereich der Blechscheibe erstrecken, der sich mit einem radialen Abstand von 5,0 mm außerhalb des äußeren Schalterkontaktbereichs erstreckt. Das auf diese Weise vorbereitete Rohteil wird unter den in Beispiel 1 beschriebenen Bedingungen tiefgegossen, wobei aber der Druck zum Halten des Rohteils 0,8 Tonnen beträgt. Das Erscheinungsbild des auf diese Weise hergestellten fertigen Erzeugnisses wird visuell geprüft.

[0078] Als Ergebnis lässt sich feststellen, dass das auf diese Weise hergestellte Erzeugnis ein gutes Erscheinungsbild ohne Risse aufweist.

Beispiel 3

[0079] Ein plattenförmiges Rohteil der in Fig. 1 gezeigten ersten Ausführungsform wird in der in Beispiel 2 beschriebenen Weise vorbereitet, wobei aber die Blechscheibe einen Durchmesser von 94 mm aufweist und wobei sich die Schweißbahnen radial vom Zentrum zu einer Position innerhalb der Peripherie der Blechscheibe mit einem radialen Abstand von 5,0 mm zu dieser erstrecken. Das auf diese Weise vorbereitete Rohteil wird unter den in Beispiel 2 beschriebenen Bedingungen tiefgegossen, um das fertige Erzeugnis herzustellen. Das Erscheinungsbild des auf diese Weise hergestellten Erzeugnisses wird visuell geprüft.

[0080] Als Ergebnis lässt sich feststellen, dass das fertige Erzeugnis ein gutes Erscheinungsbild ohne Risse aufweist.

Beispiel 4

[0081] Dieselbe oben in Beispiel 3 beschriebene Prozedur wird wiederholt, wobei aber die Länge der Schweißbahnen bei verschiedenen Rohnteilen variiert wird, so dass die äußeren Enden der Schweißbahnen bei jedem Rohteil jeweils um 1 mm radial nach innen bis zu einer Position etwas innerhalb des inneren Schalterkontaktbereich des Rohteils versetzt sind. Weiterhin werden die derart vorbereiteten Rohnteile unter den in Beispiel 3 beschriebenen Bedingungen tiefgegossen, um das fertige Erzeugnis zu erzeugen. Dann werden die Grenzziehverhältnisse der Rohnteile gemessen. Für jedes Rohteil werden zwei Messungen vorgenommen, wobei der Durchschnitt der Messergebnisse als Grenzziehverhältnis des Rohteils angenommen wird. Die Testergebnisse sind in Fig. 4 gezeigt. In Fig. 4 gibt die Beschriftung „Erster Schalterkontaktbereich“ den inneren Schalterkon-

taktbereich des Rohteils und die Beschriftung „Zweiter Schalterkontaktbereich“ den äußeren Schalterkontaktbereich des Rohteils an.

[0082] Fig. 4 zeigt, dass das Grenzziehverhältnis bei 2,375 liegt, wenn die äußeren Enden der Schweißbahnen am zweiten Schalterkontaktbereich positioniert sind. Wenn die äußeren Enden der Schweißbahnen mit einem radialen Abstand von 5,0 mm innerhalb der Peripherie des Rohteils positioniert sind, liegt das Grenzziehverhältnis ebenfalls bei 2,375. Wenn weiterhin die äußeren Enden der Schweißbahnen an der Peripherie des Rohteils positioniert sind, liegt das Grenzziehverhältnis bei 2,35.

[0083] Dabei stellt sich heraus, dass das Grenzziehverhältnis des Rohteils bei 2,357 und nicht darunter liegt und dass das Rohteil ein gutes Fließverhalten für das Tiezführen aufweist, wenn die äußeren Enden der Schweißbahnen in dem Bereich positioniert sind, der sich zwischen der Peripherie mit einem Abstand von 5,0 mm zu dieser und dem zweiten Schalterkontaktbereich erstreckt.

Vergleichsbeispiel 2

[0085] Als Ergebnis lässt sich feststellen, dass das fertige Erzeugnis ein gutes Erscheinungsbild aufweist.

Beispiel 5

[0087] Es wird die in Beispiel 3 beschriebene Prozedur wiederholt, wobei aber jeweils der Abstand zwischen den auf dem Rohteil gebildeten Schweißbahnen am äußeren Schalterkontaktbereich des Rohsteils variiert. Der Abstand zwischen den Schweißbahnen wird bei jedem Rohteil um einen bestimmten Wert bis zu einem Maximum von 70 mm geändert. Die derart vorbereiteten Rohnteile werden
dann unter den in Beispiel 3 beschriebenen Bedingungen tiefgezogen, um die fertigen Erzeugnisse zu erzeugen, wobei die Grenzziehverhältnisse der Rohteile gemessen werden. Es werden zwei Messungen für jedes Rohteil vorgenommen, wobei der Durchschnitt der Messergebnisse als Grenzziehverhältnis des Rohteils angenommen wird. Die Testergebnisse sind in Fig. 6 gezeigt. Weiterhin wird das Erscheinungsbild der auf diese Weise hergestellten Erzeugnisse visuell geprüft.

[0088] Wie aus Fig. 6 entnommen werden kann, liegt das Grenzziehverhältnis des Rohteils bei 2,25, wenn der Abstand zwischen den Schweißbahnen 30 mm beträgt. Wenn der Abstand zwischen den Schweißbahnen 16 mm beträgt, liegt das Grenzziehverhältnis des Rohteils bei 2,35. Wenn der Abstand zwischen den Schweißbahnen weniger als 5 mm oder mehr als 30 mm beträgt, liegt das Grenzziehverhältnis niedriger, wobei das fertiggestellte Erzeugnis Risse aufweist. Es lässt sich feststellen, dass das Grenzziehverhältnis des Rohteils relativ hoch ist und das fertiggestellte Erzeugnis ein gutes Erscheinungsbild aufweist, wenn der Abstand zwischen den Schweißbahnen im Bereich von 5 mm bis 30 mm liegt.

Vergleichsbeispiel 3

[0090] Als Ergebnis lässt sich feststellen, dass das Grenzziehverhältnis des Rohteils niedriger ist und das fertiggestellte Erzeugnis keine verbesserten Verarbeitungsfähigkeiten für das Tiefziehen aufweist.

Vergleichsbeispiel 4

Beispiel 6

[0094] Ein plattenförmiges Rohteil der in Fig. 7 gezeigten dritten Ausführungsform wird wie folgt vorbereitet. Ein Rohteil mit einer Dicke von 0,7 mm wird aus einem hochfesten Stahlblech, d. h. einem Kaltwalzstahlblech SAPH38 entsprechend JIS G3113-1990 hergestellt. Schweißbahnen werden unter Verwendung eines CO₂-Gaslasersstrahls mit 3 kW tief in das Rohteil eingebrannt. Die Schweißbahnen erstrecken sich radial von einem vorbestimmten Punkt des Rohteils und enden am eingespannten Teil des Rohteils, wie in der vorstehenden dritten Ausführungsform erläutert. Die Schweißbahnen weisen jeweils eine Breite von 1,0 mm auf. Die Schweißbahnen schneiden sich an keinem anderen als an dem vorbestimmten Punkt. Der Abstand zwischen den Schweißbahnen am äußeren Schutzkontaktbereich liegt im Bereich von 5 mm bis 30 mm.

[0095] Das auf diese Weise vorbereitete Rohteil wird unter Verwendung der weiter oben in der dritten Ausführungsform beschriebenen Vorrichtung tiefgezogen. Die Vorrichtung weist einen Stempel mit einem Formradius von 10 mm auf, wobei die Form einen Formradius von 10 mm aufweist und der Niederhalter des Rohteils mit einem Halteknopf von 1,5 Tonnen einspannen kann. Das fertiggestellte Erzeugnis wird unter den vorstehend beschriebenen Bedingungen hergestellt. Das Erscheinungsbild des auf diese Weise hergestellten Erzeugnisses wird visuell geprüft.

[0096] Als Ergebnis lässt sich feststellen, dass das fertige Erzeugnis ein gutes Erscheinungsbild aufweist und nicht am gebogenen Teil, der während des Tiefziehens durch die Schulter des Stempels kontakttiert wird, reißt.

Beispiel 7

[0097] Ein plattenförmiges Rohteil der in Fig. 9 gezeigten vierten Ausführungsform wird wie folgt vorbereitet. Ein Rohteil wird gebildet, indem zwei unterschiedliche gewöhnliche Stahlbleche unter Verwendung eines Laserstrahls zusammengeschweißt werden. Eines der Bleche ist ein Warmwalzstahlblech SPHC mit einer Dicke von 1,4 mm. Das andere Blech ist ein Kaltwalzstahlblech SPCC mit einer Dicke von 0,7 mm.

[0098] Das auf diese Weise vorbereitete Rohteil wird unter den in Beispiel 6 beschriebenen Bedingungen tiefgezogen, wobei aber der Stempel einen Formradius von 12 mm aufweist und der Niederhalter einen Druck zum Halten des Rohteils von 60
Tonnen ausübt. Das Erzeugnis wird unter den vorste-
hrend beschriebenen Bedingungen hergestellt. Das
Erscheinungsbild des auf diese Weise hergestellten
Erzeugnisses wird visuell geprüft.

[0099] Als Ergebnis lässt sich feststellen, dass das
fertiggestellte Erzeugnis ein gutes Erscheinungsbild
ohne Risse aufweist. Dabei ist zu beachten, dass der
Unterschied zwischen den Fließeigenschaften der
verschiedenen gewöhnlichen Stahlbleche, aus de-
en sich das Roh teil zusammensetzt, kleiner wird
und das Erzeugnis ohne eine Änderung der Material-
zusammensetzung hergestellt werden kann, wenn
die Schweißbahnen in dem sich aus verschiedenen
Stahlblechen zusammensetzenden Rohteil wie oben
beschrieben angeordnet sind. Weiterhin ist zu beach-
ten, dass das Roh teil auch dann nicht reißt, wenn
eine größere Ziehkraft auf das Roh teil angewendet
wird, um Runzeln zu beseitigen, die während des
Tiefziehverfahrens aufgrund des Unterschieds zwi-
schen den Fließeigenschaften für das Tiefziehen auftreten.

Beispiel 8

[0100] Die in Beispiel 1 beschriebene Prozedur wird
wiederholt, wobei aber der Abstand zwischen den in
dem Roh teil gebildeten Schweißbahnen am äußere-
en Schulterkontaktbereich des Roh teils in der in Bei-
spiel 5 beschriebenen Weise variiert wird. Die derart
vorbereiteten ebene Roh teile werden unter den in
Beispiel 1 beschriebenen Bedingungen tiefgezogen,
um die fertigen Erzeugnisse herzustellen. Dann wird
bei den auf diese Weise fertiggestellten Erzeugnis-
sen das Verhältnis zwischen der Dicke der tiefgezo-
gen Seitenwand zu der ursprünglichen Dicke des
Roh teils vor dem Tiefziehen gemessen. Dieses Ver-
hältnis wird im Folgenden als Reduktionsverhältnis
bezeichnet. Für jedes fertiggestellte Erzeugnis wer-
den zwei Messungen vorgenommen, wobei der Durchschnitt der Messergebnisse als das Reduktions-
verhältnis der Dicke bei 0,93, wenn der Abstand zwi-
schen den Schweißbahnen 30 mm beträgt. Wenn der
Abstand zwischen den Schweißbahnen 16 mm be-
trägt, liegt das Reduktionsverhältnis der Dicke bei
0,935. Bei einem Roh teil ohne Schweißbahn liegt das
Reduktionsverhältnis der Dicke bei 0,928. Dabei
stellt sich heraus, dass das Roh teil mit Schweißbahn-
en ein größeres Reduktionsverhältnis aufweist als
das Roh teil ohne Schweißbahn. Es lässt sich fest-
stellen, dass die Seiten wand des fertiggestellten Er-
zugnisses während des Tiefziehens nicht in ihrer Di-
cke vermindert wird, wenn der Abstand zwischen den
Schweißbahnen nicht mehr als 30 mm beträgt.

Beispiel 9

[0104] Die in Beispiel 2 beschriebene Prozedur wird
wiederholt, wobei aber die Länge der in jedem Roh-
teil gebildeten Schweißbahnen variiert wird, so dass
die äußeren Enden der Schweißbahnen mit jedem
Rohteil um 10 mm radial nach außen zur Peripherie
des Roh teils versetzt werden. Die derart vorbereiten-
ten Roh teile werden unter den in Beispiel 2 beschrie-
benen Bedingungen tiefgezogen, um die fertigen Er-
zugnisse herzustellen. Dann wird das Reduktions-
verhältnis der Dicke jedes der auf diese Weise herge-
stellten Erzeugnisse in der in Beispiel 8 beschrie-
benen Weise gemessen. Die Testergebnisse sind in
Fig. 11 gezeigt.

[0105] In Fig. 4 gibt die Beschriftung „Erster Schul-
terkontaktbereich“ den inneren Schulterkontaktbe-
reich des Roh teils an und die Bezeichnung „Zweier
Schulterkontaktbereich“ gibt den äußeren Schulter-
kontaktbereich des Roh teils an. Wie aus Fig. 11 ent-
nommen werden kann, liegt das Reduktionsverhältnis
der Dicke bei 0,901, wenn die äußeren Enden der
Schweißbahnen am ersten Schulterkontaktbereich
positioniert sind. Wenn die äußeren Enden der
Schweißbahnen am zweiten Schulterkontaktbereich
positioniert sind, liegt das Reduktionsverhältnis der
Dicke bei 0,904. Wenn die äußeren Enden der
Schweißbahnen radial mit einem Abstand von 30 mm
außerhalb des Zentrums des Roh teils positioniert
sind, liegt das Reduktionsverhältnis der Dicke bei
0,915.

[0106] Es lässt sich feststellen, dass das Reduktions-
verhältnis der Dicke relativ hoch ist, wenn die äu-
ßen Enden der Schweißbahnen in dem Bereich
positioniert sind, der sich vom zweiten Schulterkontak-
tbereich zur Peripherie des Roh teils erstreckt. Dabei
ist zu beachten, dass die Seiten wand des fertiggestel-
teten Erzeugnisses weniger durch die Reduktion der
Dicke im Tiefziehverfahren beeinträchtigt wird, wenn
die äußeren Enden der Schweißbahnen in dem Be-
reich zwischen dem äußeren Schulterkontaktbereich
und der Peripherie des Roh teils positioniert sind.
Patentansprüche

1. Verfahren zum Umformen eines plattenförmigen Rohteils (10; 210; 300) zu einem Erzeugnis (400; 500), das wenigstens ein Wandteil mit reduzierter Dicke aufweist, dadurch gekennzeichnet, dass vor dem Umformen das Rohteil (10; 210; 300) zumindest in Bereichen, in denen das Rohteilmaterial während des Umformvorgangs fließt und der Umformvorgang zu einer reduzierten Wandstärke des Erzeugnisses (400; 500) im Vergleich zur Wandstärke des Rohteils (10; 210; 300) führt, mit zumindest zwei Schweißbahnen (12; 212; 312) versehen wird, die sich zumindest im Wesentlichen in Richtung des während des Umformvorgangs auftretenden Materialfließens erstrecken.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schweißbahnen (12; 212; 312) durch eine Wärmequelle mit hoher Energiemenge aufgeschmolzen und wieder abgekühlt werden.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Wärmequelle ein Laserstrahl oder ein Elektronenstrahl ist.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schweißbahnen (12; 212; 312) in gleichen Abständen zueinander angeordnet sind.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schweißbahnen (12; 212; 312) eine Breite von 0,5 mm bis 2 mm aufweisen.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Einbrandtiefe der Schweißbahnen (12; 212; 312) jeweils größer als die Hälfte der Dicke des Rohteils (10; 210; 300) ist.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich die Schweißbahnen (12; 212; 312) von einem innenliegenden Punkt (14; C2) des Rohteils (10; 210; 300) in radialer Richtung nach außen bis zu einem vorbestimmten Abstand von der Peripherie (16; 216) des Rohteils (10; 210; 300) erstrecken.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der innenliegende Punkt (14) der Mittelpunkt des Rohteils (10) ist.

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Rohteil (300) aus zwei Stahlblechen (302, 304) besteht, die eine unterschiedliche Festigkeit und/oder Dicke aufweisen, wobei das Stahlblech (304) mit schlechterem Fließverhalten mit den Schweißbahnen (312) versehen ist.

11. Verfahren nach einer der Ansprüche 1 bis 10, gekennzeichnet durch
 - Positionieren des Rohteils (10; 210; 300) mit den Schweißbahnen (12; 212; 312) in einer vorbestimmten Position auf einer Form gegenüber einem Stempel (P),
 - Drücken eines Rohteiltellers (4) gegen das auf der Form positionierte Rohteil (15; 210; 300), um einen Peripheriebereich des Rohteils (10; 210; 300) einzuspannen und
 - Bewegen des Stempels (P) in einem Hohlraum (H) einer Form (D), um das Rohteil (10; 210; 300) entlang einer Oberfläche des Stempels zu ziehen und entlang des Peripheriebereichs des Rohteils (10; 210; 300) einen Flansch zu bilden, während das Rohteil (10; 210; 300) an dem Peripheriebereich eingespannt ist.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Mittelpunkt des Rohteils (10) zur Mittelachse des Stempels (P) ausgerichtet wird.

13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Schweißbahnen (12; 212; 312) so angeordnet sind, dass sie sich in einem ersten Bereich (22) des Rohteils (10; 210; 300), der mit einem gebogenen Oberflächenbereich (PR) des Stempels (P) in Kontakt kommt, und einem zweiten Bereich (24) des Rohteils (10; 210; 300), der mit einem vertikalen Oberflächenbereich (PW) des Stempels (P) in Kontakt kommt, nicht schneiden.

14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass jeweils ein erstes Ende der Schweißbahnen (10; 212; 312) im zweiten Bereich (24) liegt.

15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass jeweils ein zweites Ende der Schweißbahnen (12; 212; 312) in einem dritten Bereich (20), der mit einem Bodenoberflächenbereich (PB) des Stempels (P) in Kontakt kommt, liegt.

16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Schweißbahnen (212; 312) in einem Schulerkontaktbereich (230; 330) des Rohteils (210; 300), der mit dem vertikalen Oberflächenbereich (PW) und dem gebogenen Oberflächenbereich (PR) des Stempels (P) in Kontakt kommt, einen Abstand von 5 mm bis 30 mm haben.

17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass die Schweißbahnen (212; 312) sich vom Schulerkontaktbereich (230; 330) des Rohteils (210; 300) bis zu einem mit dem Niederhalter (H) befindlichen Peripheriebereich
des Rohteils (210; 300) erstreckt.

18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass das Erzeugnis (500) einen Eckbereich aufweist, und dass die Schweißbahnen (212; 312) sich in einem Punkt (C2) schneiden, der durch Projektion eines Mittelpunkts (C1) der Krümmung des gebogenen Oberflächenbereichs (PR) des Stempels (P) auf das Rohteil (210; 300) gebildet wird.

19. Plattenförmiges Rohteil zur Verwendung bei einem Umformvorgang, insbesondere zur Verwendung bei einem Verfahren nach einem der Ansprüche 1 bis 18, gekennzeichnet durch mindestens zwei Schweißbahnen (12; 212; 312), die zumindest in Bereichen angeordnet sind, in denen das Rohteilmaterial während des Umformvorgangs fliesst und der Umformvorgang zu einer reduzierten Wandstärke des Erzeugnisses (400; 500) im Vergleich zur Wandstärke des Rohteils (10; 210; 300) führte, und sich zumindest im wesentlichen in Richtung des während des Umformvorgangs auftretenden Materialflusses erstrecken.

20. Plattenförmiges Rohteil nach Anspruch 19, dadurch gekennzeichnet, dass die Schweißbahnen (12; 212; 312) jeweils eine Breite zwischen 0,5 mm und 2,0 mm haben.

21. Plattenförmiges Rohteil nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass eine Einbrandtiefe der Schweißbahnen (12; 212; 312) jeweils größer als die Hälfte der Dicke des Rohteils (10; 210; 300) ist.

22. Plattenförmiges Rohteil nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass die Schweißbahnen (12; 212; 312) in gleichen Abständen zueinander angeordnet sind.

23. Plattenförmiges Rohteil nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, dass sich die Schweißbahnen (12; 212; 312) von einem innenliegenden Punkt (14; C2) des Rohteils (10; 210; 300) in radialer Richtung nach außen bis zu einem vorbestimmten Abstand von der Peripherie (16; 216) des Rohteils (10; 210; 300) erstrecken.

24. Plattenförmiges Rohteil nach Anspruch 23, dadurch gekennzeichnet, dass sich die Schweißbahnen (12; 212; 312) nur an dem innenliegenden Punkt (14; C2) schneiden.

25. Plattenförmiges Rohteil nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass das Rohteil (10) in Form einer kreisförmigen Scheibe ausgebildet ist, wobei der innenliegende Punkt (14) der Mittelpunkt der Scheibe ist.

26. Plattenförmiges Rohteil nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass das Rohteil (210; 300) mindestens eine Ecke aufweist, wobei der innenliegende Punkt (C2) innerhalb der Ecke des Rohteils (210; 300) liegt.

27. Erzeugnis, das durch Umformen eines plattenförmigen Rohteils unter Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 18 hergestellt ist, gekennzeichnet durch eine Bodenwand (402; 502) mit einer gebogenen Peripherie, eine mit der Bodenwand (402; 502) verbundenen Seitenwand (404; 504), wenigstens eine Bogenwand (406; 506), die sich von der gebogenen Peripherie der Bodenwand (402; 502) erstreckt und mit der Seitenwand (404; 504) verbunden ist, einen Flansch (408; 508), der sich winklig von der Seitenwand (404; 504) erstreckt, und wenigstens zwei Schweißbahnen (12; 212; 312), die entlang von Linien angeordnet sind, die sich radial von einem innenliegenden Punkt (14; C2) in der Bodenwand (402; 502) über die Bogenwand (406; 506) und die Seitenwand (404; 504) erstrecken, wobei die wenigstens zwei Schweißbahnen (12; 212; 312) vor der peripheren Kante (16; 216) des Flanschs (408; 508) enden, und wobei die wenigstens zwei Schweißbahnen (12; 212; 312) in das Rohteil (10; 210; 300) eingebraucht sind.

28. Erzeugnis nach Anspruch 27, dadurch gekennzeichnet, dass sich die Schweißbahnen (12; 212; 312) nur an dem innenliegenden Punkt (14; C2) schneiden.

29. Erzeugnis nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass jeweils ein erstes Ende der Schweißbahnen (12; 212; 312) im Bereich der Seitenwand (404; 504) liegt und ein zweites Ende der Schweißbahnen (12; 212; 312) im Bereich der Bodenwand (402; 502) liegt.

30. Erzeugnis nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass jeweils ein erstes Ende der Schweißbahnen (12; 212; 312) im Bereich des Flanschs (408; 508) liegt.

31. Erzeugnis nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, dass die Schweißbahnen (12; 212; 312) gleiche Abstände zueinander aufweisen.

32. Erzeugnis nach einem der Ansprüche 27 bis 31, dadurch gekennzeichnet, dass die Bodenwand (402) kreisförmig ausgebildet ist, und dass der innenliegende Punkt (14) der Mittelpunkt der kreisförmigen Bodenwand (402) ist.

33. Erzeugnis nach einem der Ansprüche 27 bis
32, dadurch gekennzeichnet, dass zwei Schweißbahnen (12; 212; 312) einen Winkel von 180° zueinander einnehmen.

34. Erzeugnis nach einem der Ansprüche 27 bis 31, dadurch gekennzeichnet, dass die Bodenwand (502) einen Eckbereich aufweist, und dass der innenliegende Punkt (C2) im Eckbereich liegt.

Es folgen 10 Blatt Zeichnungen
FIG. 3

FIG. 4

GRENZIEHVERHÄLTNIS

ZENTRUM DES ROHTEILS

ERSTE SCHULTER-KONTAKTBEREICH

ZWEITER SCHULTER-KONTAKTBEREICH

GUTES TIEFZIEHEN

5mm

PERIPHERIE

POSITION DES ÄUSSEREN ENDES DES WULSTES