(21) Aktenzeichen: 199 39 636.1
(22) Anmeldetag: 20.08.1999
(43) Offenlegungstag: 29.03.2001
(45) Veröffentlichungstag
 der Patenterteilung: 05.08.2004

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden.

(51) Int Cl.: G01N 1/34
G01N 1/28, G01N 1/40

(54) Bezeichnung: Verfahren zur kontinuierlichen Probenahme von Rohgasen

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:
DE 41 14 468 C1
DE 37 16 350 C2
DE 36 37 546 A1
DE 29 17 274 A1
DD 1 48 172 A
DD 1 10 345 A
DD 94 909 A
DD 75 828 A

(57) Hauptanspruch: Verfahren zur kontinuierlichen Probenahme und Probenaufbereitung von Rohgasen bei Rohgasstemperaturen bis 250 °C und Drücken bis 40 bar, bei dem – das Rohgas nach seiner Entnahme unter Druckgefäße aus dem Rohgassystem in eine senkrecht zu einer Rohgasleitung (1) angeordnete Entnahmesonde (2), die gleichzeitig Gasentnahme- und Gasaufbereitungs-/Konditionierungssystem ist, geleitet wird, in welcher dem Rohgas nach der Entnahme aus dem Rohgassystem, Waschmedium (3) als Dampf oder Wasser im entsprechenden Druckniveau mit einer Temperatur von 20 – 250 °C in einer Menge von 0,5 – 5,0 kg/h zugesetzt wird, das befeuchtete verunreinigte Rohgas in einer ersten Konditionierungsstufe (4), die als thermostatisierte Kühl- und Waschstufe ausgeführt ist, auf 50 – 70 °C und in einer zweiten Konditionierungsstufe (5), die als Kühlstufe wirkt, auf 15 – 25 °C indirekt gekühlt wird und dabei alle abgeschiedenen Flüssigkeits- und Feststoffpartikel wieder in die Rohgasleitung (1) zurückgeführt werden, wobei die erste und zweite Konditionierungsstufe (4, 5) jeweils...
Beschreibung

[0001] Die Erfindung bezieht sich auf die kontinuierlichen Probenahme und Probenaufbereitung von Rohgasen, die in einem kontinuierlichen Prozess hergestellt werden, wobei das Druck- und Temperaturniveau der zu messenden Gase unterschiedlich sein kann.

[0014] Im Verfahren in DD75828 A wird die Bestimmung von Schwefeltrioxid beschrieben, indem gleich große Teilstörte unterschiedlich konditioniert werden, wobei ein Teilstrom mit Wasserdampf gemischt und nachfolgend wieder abgekühlt wird, so dass eine Kondensation und damit Auswaschung einer Gaskomponente erreicht wird, um anschließend beide Teilstörte analytisch differential verglichen und den den Gehalt der ausgewaschenen Gaskomponente bestimmen zu können. Ziel dieses Verfahrens ist es, eine selektive Eliminierung einer Gaskomponente durch gezielte Wasserdampfzugeb und Kondensation zu erreichen, um somit eine gezielte Manipulation/Veränderung der Gaszusammensetzung zu erzeugen, was jedoch bei der Analyse von Rohgasen unerwünscht und von Mangel ist.

[0015] Ferner ist in DE 37 16 350 C2 ein Verfahren und eine Einrichtung zur Aufbereitung eines zu analysierenden Gases bekannt, welches durch Abführung/Trocknung unter den entsprechenden Taupunkt Wasserdampf und andere dampfförmige Stoffe in einem speziellen Peltiereuhler mit Kondensatatablass, in Aerosol- und Opfermetallfiltern sowie in einem Permeatonstocker abtrennt. Dieses Verfahren sichert zwar die Abscheidung von wasserähnlichen Stoffen, ist aber nicht geeignet für die dauerhafte und wartungswarme Abscheidung von Teeren, Ölen und Staubpartikeln. Staubpartikel werden erst in den verschiedenen Filtern zurückgehalten und versetzt diese somit relativ schnell, was zum Ausfall der Gasaufbereitung bzw. der Analyse führt, wenn kein rechtzeitiger Filteraustausch stattfindet. Filter sollten in Gasaufbereitungsanlagen nicht für die Eliminie-
De 199 39 636 B4 2004.08.05

Aufgabenstellung

[0021] Die technische Ausführung und Wirkungsweise des Verfahrens grenzt sich gegenüber den herkömmlichen und vorher beschriebenen Verfahren zur Probenahme von Rohgasen durch eine neuartige Kombination von Funktionseinheiten zur Gasentnahme und -Aufbereitung mit nachfolgenden Vorteilen ab:

– eine Entnahmeanordnung und primäre Gasaufbereitungsanordnung bilden in Form einer Sonde ein gemeinsames neuartiges industrietaugliches System, das ermöglicht, dass sämtliche in der Sonde abgeschiedenen Feststoff- und Flüssigkeitsteilchen wieder in die Rohgasleitung, also den Prozess, zurückgeführt werden, so dass ein trockenes Probengas am Sonnenausgang nach der Konditionierung anstehen kann.
Damit entfallen sämtliche Kondensatsammelsysteme jeglicher Bauart und deren Wartung, die in den anderen vorher beschriebenen Verfahren zur Kondensatsableitung und -sammlung zwingend notwendig waren.

Eine Verlegung des Rohgasleitungssystems unter Beachtung von Winkeln, die ein Gefälle erzeugen, ist absolut nicht notwendig, da das Gas nach Austritt aus der Sonde trocken ist und in den beheizten Leitungssystemen keine Kondensation auftreten kann.

- Sichere Abscheidung von Flüssigkeits- und Feststoffpartikeln und Dämpfen sowie deren Rückführung in den Prozess ist gewährleistet.
- mit der neuartigen kompakten Bauweise der Sonde wird ein sehr geringes Totvolumen erzielt, so dass sehr kleine T50- bzw. T90-Zeiten bei geringem Probengehaltsanfall erreicht sind.
- Keine teuren Einbauten in Form von Blenden etc. in Rohgasleitungen bzw. Hauptleitungen zur Erzeugung eines Druckabfalls für die Realisierung von Teilstromungen.
- geringer Verbrauch von Hilfsmedien durch Verzicht auf kostenintensive Injektor-Pumpen für Dampf oder Wascherzestäuber.
- Keine merkliche Veränderung der Zusammensetzung des Gasprobenstromes durch die heiße Fahrtweise im Bereich der Zuführung des Waschmediums vor der 1. Konditionierungsstufe, da im anfallenden Kondensat der Konditionierungsstufen eventuell gelöster CO₂ wieder ausgetrieben wird.
- sehr hohe Verfügbarkeit > 99%.
- eine Reihe von implementierten Sicherheitsmaßnahmen zum Schutz nachfolgender teurer Messanordnungen bei einem prozessbedingten Störfall.

Im folgenden soll die Erfindung nachstehend an einem Ausführungsbeispiel näher erläutert werden. Die zugehörigen Zeichnungen zeigen das Prinzip der erfindungsgemäßen Verfahrens.

Ausz einer Rohgasleitung (1) gelangt das strömende zu untersuchende Rohgas mit den Parametern:

- Gasdruck: 26 bar
- Gastemperatur: 160 bis 200 °C
- Wasserdampfgehalt: gesättigt unter den vorstehenden Bedingungen
- Feststoffgehalt: 1 – 5 g/Nm³
- öliger-Anteile: 120 g/Nm³

auf Grund des Druckgefalles in der Enthaltungsolie (2) (siehe Fig. 1) unter Zugabe des Waschmediums (3) Wasserdampf (ca. 0,5 kg/h, 240 °C) in die erste Konditionierungsstufe (4) der Enthaltungsolie, die als thermostatisierte Kühl- und Waschstufe ausgelegt wurde. Das Waschmedium (3) bewirkt eine zusätzliche Befeuchtung und Aufheizung des Probengases, um Ablagerungen fester und teurer Produkte im untersten Teil der Sonde zu vermeiden.

Durch die Thermostatisierung der ersten Konditionierungsstufe (4) auf eine niedrigere Temperatur (ca. 50 °C) als die Rohgastemperatur nach der Waschmedienzuleitung findet in selbiger eine Kühlung des zusätzlich befeuchteten Rohgases und somit auch eine Kondensation des im Rohgas enthaltenen Dampfes und schweber Bestandteile des Rohgases (Teere, Schweröle) statt. Die Kondensate benetzen das Füllmaterial der ersten Konditionierungsstufe (4), so dass ein Wascheffekt für das nachströmende Rohgas entsteht. Überschüssiges Kondensat gelangt, angetrieben durch die eigene Schwerkraft, wieder in den Prozess zurück. Dieser Wascheffekt bewirkt die sichere Elimination von im Rohgas enthaltenen Verunreinigungen.

An die erste Konditionierungsstufe (4) schließt sich die zweite Konditionierungsstufe (5), die als reine Kühlstufe arbeitet, an. Sie kühlt das Rohgas/Probengas auf ca. 20 °C und führt damit eine zusätzliche Kondensation der mittleren und leichten Öle herbei. Die abfließenden Kondensate bewirken eine Reinigung des Füllmaterials der darunterliegenden ersten Konditionierungsstufe und unterstützen zugleich den Wascheffekt in selbiger.

Das Probengas wird nun nach dem Sondenausgang über ein feinporiges Filter (6) geleitet, um eventuell mitgesprenkten Flüssigkeitsnebel und feinste Feststoffpartikel abzuscheiden. Danach erfolgt mittels eines leistungsstarken beheizten Druckreglers (7.1) eine Entspannung des Probengases auf 2,5 bar oder bei Rohgasleitungsdruck im atmosphärischen Bereich eine Abfederung des Gases mittels einer druckerzeugenden Pumpe. Das entspannte bzw. abgeführte Gas gelangt anschließend über eine beheizte Leitung (8) (ca. 70 °C), die weitere Kondensationserscheinungen verhindern soll, zur weiteren Probenaufbereitung. Ein Sicherheitsventil (9) sorgt bei Ausfall des Druckreglers für eine Ableitung des Probengases und übernimmt damit den Schutz nachfolgender Systemeineinheiten vor Überdrücken.
In der sekundären Probenaufbereitung (Fig. 2) erfährt der Probengasstrom mittels eines Kühlers (12) eine Abkühlung auf 5 °C. Mit dieser Kühlung soll eine weitere Trocknung des Probengasstromes durch zusätzliche Kondensation von im Probengas noch enthaltenen Wasserdampf und leichten Ölen bewirkt werden. Die abgeschiedenen Kondensate werden mittels Kondensatfallen (15) abgeleitet. Am Kühler teilt sich der Probengasstrom in einen Bypass-Gasstrom (13), praktisch eingestellt auf 350 l/h, zur Minimierung der Systemtotzeit und den eigentlichen Messgasstrom (14), praktisch eingestellt auf 60 l/h. Die letzte Trocknung des Messgases findet nach dem Filter (16) in einem Gegenstrom-Trocknersystem (17) statt. Der Messgasstrom erfährt nochmals eine Trocknung auf einen Taupunkt von −40 °C. Danach gelangt das Messgas über einen weiteren Filter (18) und eine Flammensperre (19) mit nachfolgenden Parametern:

- Gasdruck: 0,05 bar(rel)
- Gastemperatur: 4 bis 6 °C
- Wasserdampfgehalt: untersättigt, Taupunkt: ca. −40°C
- Feststoffgehalt und öliger Anteil: keine nachweisbaren Spuren im Filter (16)

in den Analysator (20), in dem die Bestimmung stattfindet. Mit dieser Konfiguration und diesen Parametern ergibt sich aus dem inertisierten Zustand eine T50-Zeit von ca. 90 Sekunden und eine T90-Zeit von ca. 110 Sekunden.

Bezugszeichenliste

1. Rohgasleitung
2. Entnahmesonde
3. Waschmedium
4. 1. Konditionierungsstufe
5. 2. Konditionierungsstufe
6. Filter
7.1 Druckregler
7.2 Pumpe (alternativ)
8. beheizter Gasstrom
9. Sicherheitsventil
10. Kühlmixturein tritt
11. Kühlmischzustritt
12. Kühler
13. Bypass-Gasstrom
14. Messgasstrom
15. Kondensatfallen
16. Filter
17. Gegenstrom-Trocknersystem
18. Filter
19. Flammensperre
20. Analysator
21. Inertisierungsgasstrom

Patentansprüche

1. Verfahren zur kontinuierlichen Probenahme und Probenaufbereitung von Rohgasen bei Rohgastemperaturen bis 250 °C und Drücken bis 40 bar, bei dem
 - das Rohgas nach seiner Entnahme unter Druckgefalle aus dem Rohgasystem in eine senkrecht zu einer Rohgasleitung (1) angeordnete Entnahmesonde (2), die gleichzeitig Gasentnahme- und Gasaufbereitungs-/Konditionierungs-System ist, geleitet wird, in welcher dem Rohgas nach der Entnahme aus dem Rohgasystem, Waschmedium (3) als Dampf oder Wasser im entsprechenden Druckniveau mit einer Temperatur von 20 – 250 °C in einer Menge von 0,5 – 5,0 kg/h zugesetzt wird, das befeuchtete verunreinigte Rohgas in einer ersten Konditionierungsstufe (4), die als thermostatistierte Kühl- und Waschstufe ausgeführt ist, auf 50 – 70 °C und in einer zweiten Konditionierungsstufe (5), die als Kühlstufe wirkt, auf 15 – 25 °C indirekt gekühlt wird und dabei alle abgeschiedenen Flüssigkeits- und Feststoffpartikel wieder in die Rohgasleitung (1) zurückgeführt werden, wobei die erste und zweite Konditionierungsstufe (4, 5) jeweils mit Füllmaterial aus thermisch und chemisch beständigem Material zur Vergrößerung der Reaktions- und Austauschflächen ausgeführt sind,
 - das vorgekühlte Rohgas ein feinporiges Filter (6) mit einer Maschenweite von 1 – 10 µm durchströmt,
 - das gefilterte Rohgas bei Überdruck im Rohgasystem über einen leistungs begrenzten beheizten Druckregler (7.1) auf 2 – 4 bar entspannt oder bei Rohgassystemdruck im atmosphärischen Bereich mit einer Pumpe
(7.2) abgefedert wird,
- das entspannte oder abgefederte Rohgas zum kondensatfreien Transport auf 60
 – 80 °C wieder aufgeheizt (8) wird,
- das aufgeheizte Rohgas (8) in einer sekundären Gasprobenaufbereitung in einem ein- oder mehrstufigen
 Kühlung (12) auf 4 – 6 °C gekühlt wird,
- der gekühlte Rohgasstrom in einen Messgasstrom (14) von 0,02 – 0,10 m³/h und einen Bypassstrom (13)
 von 0,15 – 1,9 m³/h aufgeteilt wird und der Messgasstrom (14) vor Eingang in ein nachgeschaltetes Messge-
 rät (20) auf einen Taupunkt von –25 bis –50 °C in einem Gegenstromtrocknersystem (17) getrocknet wird.
- mit einer Rohgasprobemenge von 0,17 – 2,0 m³/h eine Gesamtzeit für die Rohgasprobenahme von 0,5 bis
 3,5 min eingestellt werden kann.

Es folgen 2 Blatt Zeichnungen