Verfahren und Vorrichtung zum Sammeln und Trennen von Öl, Gas und Wasser, welche aus ausgebrochenen Bohrlochern im Meeresgrund austreten.
Fig. 1.

Bekannt sind Versuche, z. B. Tankerrohre, Ab- scheider (Skimmer), "Somerbores" usw. erwiesen sich als unter den vorherrschenden Witterungsbedingungen unzweckmäßig. Deshalb müssen neue Verfahren entwickelt werden, um das aus unkontrollierten Bohrlöchern am Meeresgrund austretende Gas und Öl zu separieren und zu sammeln.

Deshalb sind Vorrichtungen erforderlich, mittels derer das aus solchen Bohrlöchern austretende Gas und Öl gesammelt und genutzt werden kann, während gleichzeitig andere Einrichtungen eingesetzt werden, um den Ausbruch zu kontrollieren, beispielsweise durch Bohren von Entlastungs-Bohrlöchern.

Das Problem der Bodenbeeinträchtigung entsteht dann, wenn die das Bohrlöch abdeckende Einrichtung einen offenen unteren Endabschnitt aufweist, der auf dem Meeresgrund abgesetzt ist und die Vorrichtung mit einer Öl-Gas-Mischung aus dem Bohrlöch gefüllt ist, welche eine Druckdifferenz zwischen dem Inneren und dem äußeren der Vorrichtung bewirkt. Übersteigt diese Druckdifferenz 3 – 5 m Wasseräquivalent (m H2O), so ist normalerweise ein Bodenbruch zu erwarten. Solche Brüche verursachen Lecks auf der Meeresbodennfläche bzw. im Boden selbst. Die Druckschwankungen auf dem Meeresboden, beispielsweise in 300 m Wassertiefe, variieren wesentlich mehr als die Bodenstandfestigkeitsgrenze von 5 m Wassersäule (in H2O). Diese enorme Druckdifferenz-Begrenzung von etwa 5 m Wassertiefe (m H2O) verursacht innerhalb einer jeden Anordnung zu minimieren, die auf dem Meeresgrund abgesetzt ist.

Wird Öl und Gas zusammen in einem Steiger (riser) transportiert, wobei der Druck in den Steiger Abschnitt von der Vertikalposition des Abschnitts abhängt, so wird der Bodendruck kontinuierlich, zeitaufwendig, mit dem Gasinhalt des Steigers variiert, weil durch den hydrostatischen Druck am Boden das Öl durch das Gas verdängt wird, welches (Gas) sich bei der Aufwärtsbewegung im Steiger expandiert.

Wird das Gas vom Öl in einem solchen Maß getrennt, daß der Gasinhalt des Öles wesentlich reduziert ist, werden die Schwankungen im Bodendruck des Steigers ebenfalls wesentlich reduziert. Eine derartige Trennung ist durch eine freie Ölschicht in einer Säule möglich, die eine überstehende Abdeckung für das aus dem Öl befreite Gas bildet. So eine Gasabdeckung bildet die Spitze einer über dem ausgeborenen Bohrlöch angeordneten Struktur.

Der Erfindung liegt daher die Aufgabe zugrunde, ein gängigemäßes Verfahren und eine Vorrichtung zu dessen Durchführung zu schaffen, mit denen die geschilderten Nachteile und Gefahren beim Transport der Öl-Gas-Mischung zur Meeresoberfläche vermieden werden können, wobei das Verfahren unabhängig von der Wassertiefe und der Wetterbedingungen eingesetzt und die entsprechende Vorrichtung zuverlässig und schnell installiert wird.

Diese Aufgabe wird erfüllungsfähig hinsichtlich des Verfahrens durch die kennzeichnenden Merkmale des Anspruchs 1 und hinsichtlich der Vorrichtung durch die kennzeichnenden Merkmale des Anspruchs 2 gelöst.

Das erfindungsgemäße Gestell kann die Form einer Säule mit einem vertikal angeordneten Rohr haben, dessen oberes Ende geschlossen ist und Auslässe für Gas aufweist, und der unteren Endabschnitt des Rohres einrichtungen zum Absitzen der Säule auf dem Meeresgrund aufweist und der mittlere Abschnitt der Säule mit Öl-Auslässen versehen ist.

Das Innere des Gestells kann mit einer oder mehreren horizontalen Aussteifungen bestückt sein, die die Aufwärtsbewegung der Öl-Gas-Mischung dämpfen.

Aus dem Gestell werden Öl und Gas getrennt zur Wasseroberfläche überführt, wo sie weiter behandelt werden, beispielsweise durch Leichtschiffen, Schiffen oder Bohrtürmen. Sodann wird das Material weitertransportiert oder das Gas kann auch verbrannt werden.

Das Säulen-Verfahren kann bei allen Wassertiefen eingesetzt werden, bei denen ein Druckgleichgewicht herstellbar ist, welches durch die folgende Gleichung gegeben ist:

\[P + \rho_1 H_g = P + \rho_2 h_g \]

wobei

\[P = \text{Atmosphärendruck in Höhe der Meeressoberfläche} \]

\[\rho_1 = \text{Spezifisches Gewicht von Wasser} \]

\[H_g = \text{Wassertiefe} \]

\[\rho_2 = \text{Gasdruck in der Spitze des Gestells} \]

\[h_g = \text{Spezifisches Gewicht von Öl im Gestell} \]

Um das Auslecken von Öl unterhalb der Unterkante des Gestelles aufgrund von geringen Druckschwankungen zu verhindern, sollte der Bodendruck in dem Gestell in folgenden Grenzen gehalten werden:

\[P + \rho_1 H_g > P_1 + p_2 h > P + \rho_1 H_g - P_2 \]

Die Ungleiche gibt einen Steuerbereich für das Gas an, wobei die maximale Druckgradient vor Bruch des Bodens ist.

Wird das Auslecken unter dem Bodenabschnitt mittels in den Meeresgrund eindringender Schneiden kontrolliert, so dass Rohre und Pipeline nicht verhindern kann, der Bodenmutter der Säule gemäß der folgenden Formel variieren wird:

\[P + \rho_1 H_g + P_1 + p_2 h > P + \rho_1 H_g - P_2 \]

Die Ungleiche gibt eine Steuerbreite für zwei P_1.

In folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugsnahme auf die Zeichnung im einzelnen erläutert. Dabei zeigt Fig. 1 einen Außendurchmesser des erfindungsgemäßen Säulen-Gestells;

Fig. 2 das Säulen-Gestell von Fig. 1 mit einem äußeren Gehäuse, Ballasttank, Speichertank und einem Ausrastungs-Deck, das für Taucher bei Einsatz des Säulen-Gestells auf dem Meeresboden zugänglich ist;

Fig. 3 ein Gestell, das für Flachwasser vorgesehen ist und bei dem sich die Plattform überhalb der Meeressoberfläche befindet; und

Fig. 4 Querschnitte entsprechend Fig. 2 und 5. Ein vertikal angeordnetes Säulen-Gestell, das bei Betrieb ein Öl/Gas-Bohrloch 2 austragen, von einem Rohr 3 mit Ventilen 4 und 4a sowie 5 auf die Teile der Auslässe 6 und 7 für Gas bzw. Öl bilden. Der untere Endabschnitt 8 des Säulen-Gestells 1 hat eine untere Kante 12, die auf dem Meeresgrund 14 abgesetzt ist. In einem vertikalen Rohr 3 und dem unteren Endabschnitt 8 des Säulen-Gestells 1 baut sich bei Betrieb eine Ölsäule 10 auf. Ein oberer Endabschnitt 9 des Säulen-Gestells weist einen oberen, gasgefüllten Abschnitt 11 auf, unterhalb dessen ein Überströmrand 15 angeordnet ist, mittels dessen Gas aus der Öl-Gas-Mischung entfernt wird, welche

Das Säulen-Gestell 1 kann, falls erwünscht, auch als zusätzliche Sicherheitsmaßnahme beim Bohren Verwendung finden, wobei das Säulen-Gestell über dem Bohrloch positioniert wird und die Bohrung durch das Oberteil des Säulen-Gestells erfolgt, welches dementsprechend konstruiert und ausgelegt sein muß.

Bei Einsatz in Flachwasser kann das Säulen-Gestell mit einer Brandschutzwand versehen sein sowie mit Brandbekämpfungsseinrichtungen, die auf der Meeresoberfläche brennendem Öl und Gas beim Installieren des Säulen-Gestells widerstehen.

Patentansprüche
1. Verfahren zum Sammeln und Trennen von Gas, Wasser und Öl, welche, kontrolliert oder nicht, aus einem Öl/Gas-Bohrloch auf dem Meeresboden ausströmen, dadurch gekennzeichnet, daß ein vertikal angeordnetes Säulen-Gestell (1) über das Bohrloch (2) abgesenkt wird, indem Ballast in mit dem Säulen-Gestell (1) verbundene Ballast-Tanks (27) eingeführt wird, bis das Säulen-Gestell um den Bohrkopf (22) des Bohrloches (2) herum auf dem Meeresgrund aufgesetzt; daß Öl/Gas-Gemisch aus dem Bohrloch (2) in das Säulen-Gestell (1) geführt wird, wobei sich im Inneren des Säulen-Gestells (1) eine Ölsäule (10) aufbaut, sowie ein oberer, gasgefüllter Abschnitt (11) des Säulen-Gestells (1), und die Aufwärtsbewegung des Ölgas-Gemisches durch die Ölsäule (10) gebremst wird; daß der Druck und die Menge des Öles und des Gases in dem Säulen-Gestell durch Betätigung von Auslässen (6, 7) für Öl und Gas gesteuert werden, so daß der hydrostatische Druck außerhalb und innerhalb der unteren Kante (12) des auf dem Meeresboden abgesetzten Säulen-Gestells (1) gleich sind, wobei ein Gas-Abschnitt (11) im oberen Endabschnitt (9) des Säulen-Gestells (1) durch Entfernung von Gas
aus dem oberen, gasgefüllten Abschnitt (11) des Säulen-Gestells (1) zwecks Verbrennung oder Speicherung erhalten bleibt; und daß Öl aus der Öl säule (10) entladen wird.

2. Säulen-Gestell zur Durchführung des Verfahrens nach Anspruch 1, zum Sammeln und Trennen von Gas, Wasser und Öl, welche, kontrolliert oder nicht, aus einem Öl/Gas-Bohrloch auf dem Meeresgrund ausströmen, dadurch gekennzeichnet, daß das Säu-

4. Säulen-Gestell nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß das Rohr (3) mit zumindest einer horizontalen inneren Aussteifung (21) zum Dämpfen der Aufwärtsbewegung des Öl-

5. Säulen-Gestell nach einem der Ansprüche 2 - 4, dadurch gekennzeichnet, daß die Gasauslaßeinrich-

6. Säulen-Gestell nach einem der Ansprüche 2 - 4, dadurch gekennzeichnet, daß die Gasauslässe (6) weiterhin ein vertikal im Oberabschnitt des Säulen-Gestells angeordnetes Ventil (4a) aufweisen, so daß Bohrungen von der Meerseoberfläche durch das Ventil (4a) und die gesamte Länge des Säulen-Gestells (1) möglich sind.

7. Säulen-Gestell nach einem der Ansprüche 2 - 6, dadurch gekennzeichnet, daß die Gas-Auslässe (7) ein Leitungssystem (20) aufweisen und zumindest ein Ventil (5) zur Verbindung mit Transporteinrich-

8. Säulen-Gestell nach einem der Ansprüche 2 - 7, dadurch gekennzeichnet, daß ein rohrgängiges Ge-

9. Säulen-Gestell nach einem der Ansprüche 2 - 8, dadurch gekennzeichnet, daß die Einrichtungen (12) zum Abstützen des Säulen-Gestells (1) auf dem Meeresgrund (14) Aussteifungen, Kästen oder Ab-

10. Säulen-Gestell nach einem der Ansprüche 2 - 9, dadurch gekennzeichnet, daβ der untere Endabschnitt (8) des Rohres (3) mit Ventileinrichtungen (16) für die Überführung von Flüssigkeit in den unteren Endabschnitt (8) des Rohres (3) bzw. aus ihm heraus vorgesehen sind.

Hierzu 4 Zeichnungen
Fig. 2.
Fig. 4.

Fig. 5.