Übersetzung der europäischen Patentschrift

(97) EP 1 259 311 B1
(21) Deutsches Aktenzeichen: 601 10 044.1
(86) PCT-Aktenzeichen: PCT/US01/01939
(96) Europäisches Aktenzeichen: 01 906 608.3
(87) PCT-Veröffentlichungs-Nr.: WO 01/052976
(86) PCT-Anmeldetag: 22.01.2001
(87) Veröffentlichungstag der PCT-Anmeldung: 26.07.2001
(97) Erstveröffentlichung durch das EPA: 27.11.2002
(97) Veröffentlichungstag der Patenterteilung beim EPA: 13.04.2005
(47) Veröffentlichungstag im Patentblatt: 26.01.2006

(30) Unionspriorität: 490759 24.01.2000 US

(73) Patentinhaber: The Lubrizol Corp., Wickliffe, Ohio, US

(74) Vertreter: Dr. Volker Vossius, Corinna Vossius, Tilman Vossius, Dr. Martin Grund, Dr. Georg Schnappauf, 81679 München

(51) Int Cl.\(^a\): B01F 17/00 (2006.01)

(84) Benannte Vertragsstaaten: DE, FR, GB

(54) Bezeichnung: TEILENTWÄSSERTES UMSETZUNGSPRODUKT, VERFAHREN ZUR HERSTELLUNG DESSELBEN, UND DASSELBE ENTHALTENDE EMULSION

DE 601 10 044 T2 2006.01.26

Beschreibung

TECHNISCHES GEBIET

HINTERGRUND DER ERFINDUNG

ZUSAMMENFASSUNG DER ERFINDUNG

[0006] Die Erfindung betrifft eine Zusammensetzung, die ein teilweise dehydratisiertes Produkt umfasst, hergestellt durch:

(I) Umsetzen (A) einer Hydrocarbyl-substituierten Bernsteinäure oder eines Anhydrids mit (B) einem Polypol, einem Polypol, einem Hydroxyamin oder einem Gemisch von zwei oder mehreren davon, um ein erstes Zwischenprodukt zu erzeugen, das umfasst: einen Ester, Teilester oder ein Gemisch davon, wenn (B) ein Polypol ist, ein Amid, Imid, Salz, Amid/Salz, Teilamid oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Polypol ist, oder einen Ester, Teilester, ein Amid, Teilamid, Amid/Salz, Imid, Ester/Salz, Salz oder
ein Gemisch von zwei oder mehreren davon, wenn (B) ein Hydroxyamin, ein Gemisch eines Polyols und eines Polyamins, ein Gemisch eines Polyols und eines Hydroxymins, ein Gemisch eines Polyamins und eines Hydroxymins oder ein Gemisch eines Polyols, eines Polyamins und eines Hydroxymins ist, wobei der Hydrocarbyl-Substituent der Säure oder des Anhydrids durchschnittlich 8 bis 200 Kohlenstoffatome aufweist, und

(II) Erhitzen des ersten Zwischenprodukts bei einer wirksamen Temperatur, um ein zweites Zwischenprodukt zu bilden, wobei Reaktionswasser gebildet wird, und Abtrennen eines Teils des Reaktionswassers von dem zweiten Zwischenprodukt, um das teilweise dehydratisierte Produkt zu bilden, wobei, wenn (A) das Bernsteinäureanhydrid ist, die Menge an Reaktionswasser, das abgetrennt wird, 0,2 bis 0,9 mol des Reaktionswassers pro Äquivalent an Bernsteinäureanhydrid beträgt, wenn (A) die Bernsteinäure ist, die Menge an Reaktionswasser, die abgetrennt wird, 1,2 bis 1,9 mol des Reaktionswassers pro Äquivalent der Bernsteinäure beträgt, wobei das Teilweise dehydratisierte Produkt eine Säurezahl von 20 bis 100 mg KOH/g aufweist.

[0007] Die Erfindung betrifft auch ein Verfahren, das umfasst:

(I) Umsetzen (A) einer Hydrocarbyl-substituierten Bernsteinäure oder eines Anhydrids mit (B) einem Polyl, einem Polyamin, einem Hydroxyamin oder einem Gemisch von zwei oder mehreren davon, um ein erstes Zwischenprodukt zu bilden, das umfasst: einen Ester, Teiler oder ein Gemisch davon, wenn (B) ein Polyl ist, ein Amid, Imid, Salz, Amid/Salz, Teilamid oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Polyamin ist, oder einen Ester, Teiler, ein Amid, Teilamid, Amid/Salz, Imid, Ester/Salz, Salz oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Hydroxyamin, ein Gemisch eines Polyols und eines Polyamins, ein Gemisch eines Polyols und eines Hydroxymins, ein Gemisch eines Polyamins und eines Hydroxymins oder ein Gemisch eines Polyols, eines Polyamins und eines Hydroxymins ist, wobei der Hydrocarbyl-Substituent der Säure oder des Anhydrids durchschnittlich 8 bis 200 Kohlenstoffatome aufweist, und

(II) Erhitzen des ersten Zwischenprodukts bei einer wirksamen Temperatur, um ein zweites Zwischenprodukt zu bilden, wobei Reaktionswasser gebildet wird, und Abtrennen eines Teils des Reaktionswassers von dem zweiten Zwischenprodukt, um das teilweise dehydratisierte Produkt zu bilden, wobei, wenn (A) das Bernsteinäureanhydrid ist, die Menge an Reaktionswasser, die abgetrennt wird, 0,2 bis 0,9 mol des Reaktionswassers pro Äquivalent an Bernsteinäureanhydrid beträgt, wenn (A) die Bernsteinäure ist, die Menge an Reaktionswasser, die abgetrennt wird, 1,2 bis 1,9 mol des Reaktionswassers pro Äquivalent der Bernsteinäure beträgt, wobei das Teilweise dehydratisierte Produkt eine Gesamtsäurezahl von 20 bis 100 mg KOH/g aufweist.

[0008] Die Erfindung betrifft auch Emulsionen, die eine organische Phase, eine wässrige Phase und eine emulgierende Menge des vorstehenden teilweise dehydratisierten Produkts umfassen.

GENAUE BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN

[0010] Wie hierin verwendet, werden die Begriffe Hydrocarbyl-Substituent, Hydrocarbylgruppe, Kohlenwasserstoffgruppe und dergleichen verwendet, um eine Gruppe zu bezeichnen, die ein oder mehrere Kohlenstoffatome aufweist, die direkt an den Rest eines Moleküls gebunden sind, und einen Kohlenwasserstoff- oder vorherrschenden Kohlenwasserstoffcharakter aufweist. Beispiele beinhalten:

(1) reine Kohlenwasserstoffgruppen, d.h. aliphatische (z.B. Alkyl-, Alkenyl- oder Alkylen-), alicyclische (z.B. Cycloalkyl-, Cycloalkenyl-) Gruppen, aromatische Gruppen und aromatischem, aliphatisch- und alicyclisch-substituierte aromatische Gruppen als auch cyclische Gruppen, worin der Ring durch einen weiteren Teil des Moleküls vervollständigt wird (z.B. bilden zwei Substituenten zusammen eine alicyclische Gruppe),

(2) substituierte Kohlenwasserstoffgruppen, d.h. Kohlenwasserstoffgruppen mit Nichtkohlenwasserstoffgruppen, die im Zusammenhang der Erfindung den vorherrschenden Kohlenwasserstoffcharakter der Gruppe nicht verändern (z.B. Halogen-, Hydroxy-, Alkoxy-, Mercapto-, Alkylmercapto-, Nitro-, Nitroso- und Sulfonxygruppen),

(3) hetero substituierte Kohlenwasserstoffgruppen, d.h. Kohlenwasserstoffgruppen, die Substituenten ent-

[0012] Der Begriff "wasserlöslich" betrifft Materialien, die in Wasser in einem Ausmaß von mindestens einem Gramm pro 100 Milliliter Wasser bei 25°C löslich sind.

[0013] Der Begriff "öIiöIiöIiöslich" betrifft Materialien, die in Mineralöl in einem Ausmaß von mindestens einem Gramm pro 100 Milliliter an Mineralöl bei 25°C löslich sind.

[0015] Der Begriff "Gesamtsäurezahl" (TBN-Wert) betrifft ein Maß der Menge an Säure (Perchlor- oder Chlorwasserstoffsaure), die benötigt wird, um die Basizität eines Produkts oder einer Zusammensetzung zu neutralisieren, ausgedrückt als KOH-Äquivalente. Sie wird unter Verwendung des Testverfahrens ASTM D 2896 gemessen.

[0016] Die Zahl an "Äquivalenten" einer Hydrocarbyl-substituierten Bernsteinsäure oder eines Anhydrids hängt von der Anzahl von Carboxylfunktionen (z.B. -COOH), die in der Säure oder dem Anhydrid vorhanden sind, ab. Folglich wird die Anzahl an Äquivalenten an Säure oder Anhydrid mit der Anzahl an darin vorhandenen Bernsteinsäuregruppen variieren. Beim Bestimmen der Anzahl an Äquivalenten an Säure oder Anhydrid werden diejenigen Carboxylfunktionen, die nicht fähig sind, sich mit dem Polyol, Polyamin oder Hydroxyamin (B) umzusetzen, ausgeschlossen. Im Allgemeinen gibt es jedoch zwei Äquivalente an Säure oder Anhydrid für jede Bernsteinsäuregruppe in der Säure oder dem Anhydrid. Herkömmliche Techniken sind zum Bestimmen der Anzahl an Carboxylfunktionen (z.B. Säurezahl, Verseifungszahl) und somit der Anzahl an Äquivalenten der Säure oder des Anhydrids, die zum Umsetzen mit der Komponente (B) verfügbar sind, leicht verfügbar.

[0017] Ein "Äquivalent" eines Polyols ist diejenige Menge an Poliol, die dem Gesamtgewicht an Polyol dividiert durch die Gesamtanzahl an vorhandenen Hydroxylgruppen entspricht. Folglich weist Glycerin ein Äquivalentgewicht auf, das gleich zu einem Drittel seines Molekulargewichts ist.

[0019] Ein "Äquivalent" eines Hydroxamins ist diejenige Menge an Hydroxamin, die dem Gesamtgewicht an Hydroxamin dividiert durch die Anzahl von vorhandenen Hydroxylgruppen und vorhandenen Stickstoffatomen, die zum Umsetzen mit einer Hydrocarbyl-substituierten Bernsteinsäure oder einem Anhydrid fähig sind, entspricht. Folglich weist Diethanolamin ein Äquivalentgewicht auf, das zu einem Drittel seines Molekulargewichts gleich ist.
Das teilweise dehydratisierte Reaktionsprodukt

[0020] Die Hydrocarbyl-substituierte Bernsteinsäure oder das Anhydrid (A) kann durch die Formeln

\[
\begin{align*}
\text{R} & \quad \text{CH} - \text{COOH} \\
& \quad \text{CH}_2 - \text{COOH}
\end{align*}
\]

oder

\[
\begin{align*}
\text{R} \quad \text{O} \\
& \quad \text{O}
\end{align*}
\]

dargestellt werden, worin in jeder der vorstehenden Formeln R eine Hydrocarbylgruppe mit 8 bis 200 Kohlenstoffatomen und in einer Ausführungsform etwa 12 bis etwa 150 Kohlenstoffatomen und in einer Ausführungsform etwa 12 bis etwa 100 Kohlenstoffatomen und in einer Ausführungsform etwa 12 bis etwa 75 Kohlenstoffatomen und in einer Ausführungsform etwa 12 bis etwa 50 Kohlenstoffatomen und in einer Ausführungsform etwa 18 bis etwa 30 Kohlenstoffatomen ist. In einer Ausführungsform ist R eine Alkyl- oder eine Alkenylgruppe.

[0021] In einer Ausführungsform wird ein Gemisch von mindestens zwei Hydrocarbyl-substituierten Bernsteinsäuren oder Anhydriden verwendet. Der Hydrocarbyl-Substituent einer der Säuren oder Anhydride weist durchschnittlich etwa 12 bis etwa 24 Kohlenstoffatome und in einer Ausführungsform etwa 14 bis etwa 18 Kohlenstoffatome in einer Ausführungsform 16 Kohlenstoffatome auf. Der Hydrocarbyl-Substituent der anderen Säure oder des anderen Anhydrids weist durchschnittlich etwa 60 bis etwa 200 Kohlenstoffatome und in einer Ausführungsform etwa 60 bis etwa 150 Kohlenstoffatome und in einer Ausführungsform etwa 60 bis etwa 100 Kohlenstoffatome und in einer Ausführungsform etwa 60 bis etwa 75 Kohlenstoffatome auf.

ben, wobei die Beschreibung von jeder von diesen hierin durch eine Bezugnahme eingeschlossen ist.

[0026] In einer Ausführungsform besteht die Hydrocarbyl-substituierte Bernsteinsäure oder das Anhydrid (A) aus Hydrocarbyl-Substituentengruppen und Bernsteinsäuregruppen. Die Hydrocarbyl-Substituentengruppen leiten sich von einem wie vorstehend beschriebenen Olefin-Polymer ab und weisen in einer Ausführungsform ein Molekulargewicht-Zahlenmittel von etwa 750 bis etwa 3000 und in einer Ausführungsform etwa 900 bis etwa 2000 auf. Die Hydrocarbyl-substituierte Bernsteinsäure oder das Anhydrid ist durch das Vorhandensein innerhalb ihrer/seiner Struktur von durchschnittlich mindestens etwa 1,3 Bernsteinsäuregruppen und in einer Ausführungsform etwa 1,5 bis etwa 2,5 und in einer Ausführungsform etwa 1,7 bis etwa 2,1 Bernsteinsäuregruppen für jedes Äquivalentgewicht des Hydrocarbyl-Substituenten charakterisiert.

\[\text{Mn-Wert} \times (\text{Verseif.-Z. des Acrylierungsmittels}) \]
\[\text{SR} = \frac{(56 100 \times 2) - (98 \times \text{Verseif.-Z. des Acrylierungsmittels})}{2} \]

[0030] In einer Ausführungsform ist das Polyol (B) eine Verbindung, die durch die Formel
\[\text{R}-(\text{OH})_m \]
dargestellt wird, worin in der vorstehenden Formel R eine organische Gruppe mit einer Valenz von m ist, R an die OH-Gruppen über Kohlenstoff-Sauerstoff-Bindungen gebunden ist und m eine ganze Zahl von 2 bis etwa 10 und in einer Ausführungsform 2 bis etwa 6 ist. Das Polyol kann ein Glykol, ein Polyoxyalkylenyglykol, ein Kohlenhydrat oder ein teilweise verestertes mehrwertiger Alkohol sein. Beispiele für die Polyole, die verwendet werden können, beinhalten Ethyenglykol, Diethyenglykol, Triethyenglykol, Tetraethyenglykol, Propylyenglykol, Dipropylyenglykol, Tripropylyenglykol, Dibutylyglykol, Tributylyglykol, 1,2-Butandiol, 2,3-Dimethyl-2,3-butandiol, 2,3-Hexandiol, 1,2-Cyclohexandiol, Pentaerythrit, Dientaerythrit, 1,7-Heptandiol, 2,4-Heptandiol, 1,2,3-Heptantriol, 1,2,4-Heptantriol, 1,2,5-Hexantriol, 2,3,4-Hexantriol, 1,2,3-Butantriol, 1,2,4-Butantriol, 2,2,6,6-Tetradekylglykol, 1,10-Decandiol, Digitalose, 2-Hydroxymethyl-2-methyl-1,3-propandiol(1trimethylolpropan) und dergleichen. Gemische von zwei oder mehreren der vorstehenden können verwendet werden.

[0031] In einer Ausführungsform ist das Polyol ein Zucker, eine Stärke oder ein Gemisch davon. Beispiele für diese beinhalten Erythrit, Threitol, Adonitol, Arabitol, Xylit, Sorbit, Mannit, Erythrose, Fucose, Ribose, Xylose,

[0032] In einer Ausführungsform ist das Polyol eine Verbindung der Formel

\[\text{HO(CH}_2\text{CH(OH)CH}_2\text{O)}_n\text{H} \]

worin \(n \) eine Zahl von 1 bis etwa 5 und in einer Ausführungsform 1 bis etwa 3 ist. Beispiele beinhalten Glycerin, Diglycerin, Triglycerin und dergleichen. Gemische als auch Isomere der vorstehenden können verwendet werden.

[0034] Das Polyamin \((B) \) kann eine aliphatische, cycloaliphatische, heterocyclische oder aromatische Verbindung sein. Beispiele beinhalten Alkylenpolyamine und heterocyclische Polyamine. Die Alkylenpolyamine können durch die Formel

\[\text{H}_n\{\text{Alkylen} \text{ } -\text{N} \}_n\text{R} \]

\[\text{R} \]

dargestellt werden, worin \(n \) einen durchschnittlichen Wert von 1 bis etwa 10 und in einer Ausführungsform etwa 2 bis etwa 7 aufweist, die \(\text{Alkylen}\)-Gruppe 1 bis etwa 10 Kohlenstoffatome und in einer Ausführungsform etwa 2 bis etwa 6 Kohlenstoffatome aufweist und jede Gruppe R unabhängig ein Wasserstoffatomen oder eine aliphatische oder Hydroxy-substituierte aliphatische Gruppe mit bis zu etwa 30 Kohlenstoffatomen ist. Diese Alkylenpolyamine beinhalten Ethylenpolyamine, Butylenpolyamine, Propylenpolyamine, Pentylpolyamine, etc. Die höheren homologen und verwandten heterocyclischen Amine wie Piperazine und \(n\)-Aminoalkyl-substituierten Piperazine sind auch eingeschlossen. Spezifische Beispiele für solche Polyamine beinhalten Ethylenediammin, Triethylenetetramin, Tris(2-aminoethyl)amin, Propylenediammin, Trimethylenediamin, Tripropylenetetramin, Tetraethylenpentamin, Hexaethylenheptamin, Pentaethylenhexamin oder ein Gemisch von zwei oder mehreren davon.

[0037] Das Hydroxyamin \((B) \) kann ein primäres, sekundäres oder tertiäres Amin sein. Die Begriffe "Hydroxyamin" und "Aminoalkohol" beschreiben die gleiche Klasse von Verbindungen und können folglich austauschbar
verwendet werden. In einer Ausführungsform ist das Hydroxymamin (a) ein N-(Hydroxyl-substituierte Hydrocarbylgruppe)amin, (b) ein Hydroxyl-substituiertes Poly(hydroxycarboxylxy)-Analogen von (a) oder ein Gemisch von (a) und (b). Das Hydroxymamin kann ein Alkanolamin mit 1 bis etwa 40 Kohlenstoffatomen, in einer Ausführungsform 1 bis etwa 20 Kohlenstoffatomen und in einer Ausführungsform 1 bis etwa 10 Kohlenstoffatomen sein.

[0038] Das Hydroxymamin kann ein primäres, sekundäres oder tertiäres Alkanolamin oder ein Gemisch von zwei oder mehreren davon sein. Diese Hydroxymamine können jeweils durch die Formeln:

\[H_2N-R'-OH \]

\[\begin{array}{c}
 H \\
 \downarrow \\
 N-R'-OH \\
 \uparrow \\
 R \\
\end{array} \]

und

\[\begin{array}{c}
 R \\
 \downarrow \\
 N-R'-OH \\
 \uparrow \\
 R \\
\end{array} \]

dargestellt werden, worin jede Gruppe R unabhängig eine Hydrocarbylgruppe mit 1 bis etwa 8 Kohlenstoffatomen oder eine Hydroxyl-substituierte Hydrocarbylgruppe mit 2 bis etwa 8 Kohlenstoffatomen ist und R' eine bivalente Kohlenwasserstoffgruppe mit etwa 2 bis etwa 18 Kohlenstoffatomen ist. Typischerweise ist jede Gruppe R eine Niederalkylgruppe mit bis zu 7 Kohlenstoffatomen. Die Gruppe -R'-OH in solchen Formeln entspricht der Hydroxyl-substituierten Hydrocarbylgruppe. R' kann eine acyclische, alicyclische oder aromatische Gruppe sein. Typischerweise ist R' eine acyclische geradkettige oder verzweigte Alkylengruppe, wie eine Ethyl-, 1,2-Propylen-, 1,2-Butylen-, 1,2-Octadecylengruppe, etc.

$H_2N-(R'O)_x-H$

$\xrightarrow{R'}\quad N-(R'O)_x-H$

$\xrightarrow{R}\quad N-(R'O)_x-H$

dargestellt werden, worin x eine Zahl von etwa 2 bis etwa 15 ist, und R und R' wie vorstehend beschrieben sind.

[0044] Weitere Hydroxyamine sind die Hydroxy-substituierten primären Amine, die in der US-PS 3,576,743 durch die allgemeine Formel

$\text{R}_n\text{-NH}_2$

beschrieben werden, worin R_n eine monovalente organische Gruppe mit mindestens einer alkoholischen Hydroxygruppe ist. Die Gesamtanzahl an Kohlenstoffatomen in der Gruppe R_n übersteigt vorzugsweise etwa 20 nicht. Hydroxy-substituierte aliphatische primäre Amine mit insgesamt bis zu etwa 10 Kohlenstoffatomen sind verwendbar. Die Polyhydroxy-substituierten primären Alkanolamine, worin lediglich eine Aminogruppe (d.h. eine primäre Aminogruppe) mit einem Alkylsubstituenten mit bis zu etwa 10 Kohlenstoffatomen und bis zu etwa 6 Hydroxygruppen vorhanden ist, sind verwendbar. Diese primären Alkanolamine entsprechen $\text{R}_n\text{-NH}_2$, worin R_n eine Mono-O- oder Polyhydroxy-substituierte Alkylgruppe ist. Es ist wünschenswert, dass mindestens eine der Hydroxygruppen eine primäre alkoholische Hydroxygruppe ist. Spezifische Beispiele der Hydroxy-substituierten primären Amine beinhalten 2-Amino-1-butanol, 2-Amino-2-methyl-1-propanol, p-(beta-Hydroxyethyl)anilin, 2-Amino-1-propanol, 3-Amino-1-propanol, 2-Amino-2-methyl-1,3-propanediol, 2-Ami-
no-2-ethyl-1,3-propanediol, N-(beta-Hydroxypropyl)-N'-(betaaminooethyl)piperazin, Tris(hydroxymethyl)aminomethan (auch als Trismethylolaminomethan bekannt), 2-Amino-1-butanol, Ethanolamin, beta-[(beta-Hydroxyethoxy)ethylamin, Glucamin, Glusoamin, 4-Amino-3-hydroxy-3-methyl-1-buten (das gemäß bekannter Verfahren durch Umsetzen von Isopropenyl mit Ammoniak hergestellt werden kann), N,3-(Aminopropyl)-4-(2-hydroxyethyl)piperadin, 2-Amino-6-methyl-6-heptanol, 5-Amino-1-pentanol, N-(beta-Hydroxyethyl)-1,3-diamino- propan, 1,3-Diamino-2-hydroxypropan, N-(beta-Hydroxyethoxyethyl)ethylendiamin, Tris(methylolaminomethan und dergleichen.

[0046] Das Produkt der Umsetzung zwischen den Komponenten (A) und (B) während des Schritts (I) des er- findungsgemäßen Verfahrens ist ein erster Zwischenverbindungsprodukt. Dieses Produkt kann ein Ester oder ein Teilester, wenn die Komponente (B) ein Polyol ist, sein. Dieses Produkt kann ein Amid, Imid, Salz, Amid/Salz, Tealamid oder Gemisch von zwei oder mehreren davon sein, wenn (B) ein Polyamin ist. Dieses Pro- dukt kann ein Ester, Teilester, Amid, Tealamid, Amid/Salz, Imid, Ester/Salz, Salz oder ein Gemisch von zwei oder mehreren davon sein, wenn die Komponente (B) ein Hydroxamid, ein Gemisch eines Polyols und eines Polyamins, ein Gemisch eines Polys und eines Hydroxamins oder ein Gemisch eines Polyamins und eines Hydroxamins ist. Das Salz kann ein inneres Salz, was Reste eines Moleküls der Säure oder des Anhydrids und des Polyamins oder Hydroxamins einschließt, wobei eine der Carboxylgruppen an ein Stickstoffatom innerhalb der gleichen Gruppe ionisch gebunden wird, oder es kann ein externes Salz sein, wobei die ionische Salzgruppe mit einem Stickstoffatom gebildet wird, das nicht Teil des gleichen Moleküls ist. Während des Schritts (I) werden die Komponenten (A) und (B) gemischt und bei einer wirksamen Temperatur erhitzt, um das vorstehende erste Zwischenverbindungsprodukt zu bilden. In einer Ausführungsform beträgt die Temperatur etwa 30 bis etwa 120°C und in einer Ausführungsform etwa 50 bis etwa 90°C. Die Reaktionszeitspanne beträgt typischerweise etwa 1 bis etwa 120 Minuten und in einer Ausführungsform etwa 1 bis etwa 60 Minuten. Die Komponenten (A) und (B) können in einem normalerweise flüssigen, im Wesentlichen inerten organischen flüssigen Lösungsmittel/Verdünnungsmittel während der Umsetzung dispergiert oder gelöst sein. In einer Ausführungsform werden die Komponenten (A) und (B) in Mengen umgesetzt, die ausreichen, um ein Äquivalenzver- hältnis von (A) zu (B) von etwa 3:1 bis etwa 1:2 bereitzustellen. In einer Ausführungsform beträgt dieses Verhältnis etwa 1:1 bis etwa 1:2 und in einer Ausführungsform etwa 1:1,4 bis etwa 1:1,9.

[0047] Während des Schritts (II) wird das erste Zwischenverbindungsprodukt aus Schritt (I) bei einer ausreichen- den Temperatur erhitzt, um ein zweites Zwischenverbindungsprodukt zu bilden, wobei Wasser aus der Reaktion gebildet wird. Die Temperatur kann etwa 130 bis 210°C und in einer Ausführungsform etwa 135 bis etwa 150°C betragen. Die Reaktionszeitspanne beträgt typischerweise etwa 1 bis etwa 10 Stunden und in ei- ner Ausführungsform etwa 1,5 bis etwa 3 Stunden. Wenn (B) ein Polyol ist, umfasst das zweite Zwischenver- bindungsprodukt ein oder mehrere Bisester, Triester oder Oligomere niedriger Ordnung (etwa 2 bis etwa 6 und in einer Ausführungsform etwa 2 bis etwa 4) mit Ester- oder Ester- und Säurefunktionalität. Wenn (B) ein Poly-amin ist, umfasst das zweite Zwischenverbindungsprodukt ein oder mehrere Bisamide, Bisamide, Amid/Imid-Oligomere oder Oligomere niedriger Ordnung (etwa 2 bis etwa 6 und in einer Ausführungsform etwa 2 bis etwa 4) mit Amid-, Imid-, Amid/Imid-, Säure- und/oder Salzfunktionalität. Wenn (B) ein Hydroxamid ist, umfasst das zweite Zwischenverbindungsprodukt ein oder mehrere Bisamide, Bisamide, Ester/Amide oder Oligomere niedriger Ordnung (etwa 2 bis etwa 6 und in einer Ausführungsform etwa 2 bis etwa 4) mit Ester-, Amid-, Säure- und/oder Salzfunktionalität. Wenn (B) ein Gemisch eines Polyols, Polyamins und/oder Hydroxy- amin ist, umfasst das zweite Zwischenverbindungsprodukt ein oder mehrere der vorstehend beschriebenen Produkte, abhängig davon, welches Polyol, Polyamin und/oder Hydroxamin verwendet wird/werden. Wäh- rend des Schritts (II) wird ein Teil des Reaktionswassers von dem zweiten Zwischenverbindungsprodukt unter Verwendung bekannter Techniken (z.B. Destillation, azeotropische Entfernung von Wasser, Molekularsiebe, etc.) entfernt, um das gewünschte teilweise dehydratisierte Produkt bereitzustellen. Wenn die Komponente (A) ein Bernsteinsäureanhydrid ist, beträgt die Menge an Reaktionswasser, die entfernt wird, 0,2 bis 0,9 mol Was-
ser pro Äquivalent an Bernsteinsäureanhydrid und in einer Ausführungsform etwa 0,3 bis etwa 0,8 mol Wasser pro Äquivalent an Bernsteinsäureanhydrid und in einer Ausführungsform etwa 0,4 bis etwa 0,6 mol Wasser pro Äquivalent an Bernsteinsäureanhydrid. Wenn die Komponente (A) eine Bernsteinsäure ist, beträgt die Menge an Reaktionswasser, die entfernt wird, 1,2 bis 1,9 mol Wasser pro Äquivalent Bernsteinsäure und in einer Ausführungsform etwa 1,3 bis etwa 1,8 mol Wasser pro Äquivalent Bernsteinsäure und in einer Ausführungsform etwa 1,4 bis etwa 1,6 mol Wasser pro Äquivalent an Bernsteinsäure.

[0049] In den nachstehenden Beispielen als auch überall in der Beschreibung und in den Ansprüchen sind, wenn nicht anders angegeben, alle Teile und Prozentangaben nach Gewicht angegeben, alle Temperaturen sind in Grad Celsius (°C) angegeben und alle Drücke sind bei oder nahe atmosphärischem Druck.

Beispiel 1

[0050] Ein Fünffilter-Vierhalskolben, der mit einem Thermoelement, einem Zugabetrichter mit einem N₂-Einlass am oberen Ende, einer Dean-Stark-Falle mit einem Wasserkühler am oberen Ende und einem Überkopfrührer ausgestattet ist, wird mit C₁₈₃₀-Alkenylbernsteinsäureanhydrid (1740,8 g, 3,71 mol) beschickt. Der Inhalt des Kolbens wird gerührt und auf 64°C erhitzt. Diethanolamin (590 g, 5,62 mol) wird über den Zugabetrichter über 35 Minuten zugegeben. Das Gemisch durchläuft eine Exotherme auf 105°C. Das Gemisch wird auf 140°C über 20 Minuten erhitzt und bei dieser Temperatur zwei Stunden und 40 Minuten gehalten. Reaktionswasser (24 g) wird entfernt. Das Produkt weist einen TAN-Wert von 53 mg KOH/g und einen TBN-Wert von 53,7 mg KOH/g auf.

Beispiel 2

[0051] Ein Fünffilter-Vierhalskolben, der mit einem Thermoelement, einem Zugabetrichter mit einem N₂-Einlass am oberen Ende, einer Dean-Stark-Falle mit einem Wasserkühler am oberen Ende und einem Überkopfrührer ausgestattet ist, wird mit C₁₈₃₀-Alkenylbernsteinsäureanhydrid (1715 g, 3,66 mol) beschickt. Der Inhalt des Kolbens wird gerührt und auf 50°C erhitzt. Diethanolamin (653 g, 6,22 mol) wird über den Zugabetrichter über 25 Minuten zugegeben (die Reaktion durchläuft eine Exotherme auf 120°C). Das Gemisch wird auf 140°C erhitzt und bei dieser Temperatur 5 Stunden gehalten. Reaktionswasser (35 g) wird entfernt. Das Produkt weist einen TAN-Wert von 37 mg KOH/g und einen TBN-Wert von 57 mg KOH/g auf.

Beispiel 3

Beispiel 4

[0053] Ein Dreiliter-Vierhalskolben, der mit einem Überkopfrührer, einem Thermoelement, einem Zugabetrichter mit einem N₂-Einlass am oberen Ende und einer Dean-Stark-Falle mit einem Kühler am oberen Ende ausgestattet ist, wird mit C₁₈₃₀-Alkenylbernsteinsäureanhydrid (1360,6 g, 2,90 mol) beschickt. Der Inhalt des Kolbens wird gerührt und auf 63°C erhitzt. Diethanolamin (406 g, 3,87 mol) wird über den Zugabetrichter über 27 Minuten zugegeben. Während der Zugabe durchläuft das Reaktionsgemisch eine Exotherme auf 114°C. Die Temperatur wird auf 140°C über 15 Minuten durch externes Erhitzen erhöht und bei dieser Temperatur 45
Minuten gehalten. Reaktionswasser (18 g) wird entfernt. Das Gemisch wird auf Raumtemperatur abgekühlt. Der TAN-Wert des Endprodukts beträgt 60,7 mg KOH/g.

Beispiel 5

[0054] Ein Zweiliter-Vierhalskolben, der mit einem Sperrhahnabfluss, einem Überkopftrichter, einem Thermoelement, einem Zugabeträger mit einem N₂-Einlass am oberen Ende und einer Dean-Stark-Falle mit einem Wasserkühler am oberen Ende ausgestattet ist, wird mit C₁₆₋₃₀-Alkenylniersteinäureanhydrid (1050,3 g, 2,24 mol) beschickt. Der Inhalt des Kolbens wird auf 60°C erhitzt. Triethanolamin (158,7 g, 1,06 mol) und Glycerin (293,9 g, 3,19 mol) werden nacheinander über einen 30-minütigen Zeitraum zugegeben. Während der Triethanolaminzugabe unterläuft das Reaktionsgemisch eine Exothermie auf 90°C. Nach Abschluss der Glyzerinzugabe wird das Reaktionsgemisch gerührt und auf 140°C erhitzt und bei dieser Temperatur 5 Stunden gehalten, um das Endprodukt bereitzustellen, das in der Form einer viskosen braunen Flüssigkeit vorliegt. Reaktionswasser (25 g) wird entfernt. Das Produkt weist einen TAN-Wert von 29,3 mg KOH/g, einen TBN-Wert von 39,8 mg KOH/g und einen Stickstoffgehalt von 0,98 Gew.-% auf.

Beispiel 6

[0055] Ein Einliter-Vierhalskolben, der mit einem Thermoelement, einem Zugabeträger mit einem N₂-Einlass am oberen Ende, einer Dean-Stark-Falle mit einem Wasserkühler am oberen Ende und einem Überkopftrichter ausgestattet ist, wird mit C₁₆₋₃₀-Alkenylniersteinäureanhydrid (251,4 g, 0,57 mol) und einem Gemisch von C₈₋₁₈-alpha-Olefinen (140,3 g) beschickt. Der Inhalt des Kolbens wird gerührt und auf 90°C erhitzt. Ein Polyaminsäumpe-Produkt, das vorherrschend Tetraethylengentamin entspricht (29,6 g, 0,71 mol), wird tropfenweise über den Zugabeträger zugegeben. Das Gemisch durchläuft eine Exothermie auf 110°C. Das Gemisch wird bei 100°C 3,5 Stunden gehalten. Reaktionswasser (3,15 g) wird entfernt. Das Produkt weist einen TAN-Wert von 49,7 mg KOH/g auf.

Beispiel 7

[0056] Ein Einliter-Vierhalskolben, der mit einem Thermoelement, einem Zugabeträger mit einem N₂-Einlass am oberen Ende, einer Dean-Stark-Falle mit einem Wasserkühler am oberen Ende und einem Überkopftrichter ausgestattet ist, wird mit C₁₆₋₃₀-Alkenylniersteinäureanhydrid (315,8 g, 0,72 mol) und einem Gemisch von C₈₋₁₈-alpha-Olefinen (167,0 g) beschickt. Der Inhalt des Kolbens wird gerührt und auf 90°C erhitzt. Ein Polyaminsäumpe-Produkt, das vorherrschend Tetraethylengentamin entspricht (30, g, 0,72 mol), wird über den Zugabeträger über 10 Minuten zugegeben. Das Gemisch durchläuft eine Exothermie auf 120°C. Das Gemisch wird bei 100°C unter Rühren 3,5 Stunden gehalten. Reaktionswasser (4,0 g) wird entfernt. Das Produkt weist einen TAN-Wert von 55,4 mg KOH/g auf.

Beispiel 8

Beispiel 9

[0058] Ein Einliter-Fünfhalskolben wird mit Propylyatetramer-substituiertem Bernsteinäureanhydrid (296 g), Glycerin (96 g) und Triethanolamin (176 g) beschickt. Das Gemisch wird auf 110°C unter Rühren und einer Stickstoffspülung erhitzt. Die Temperatur wird bei 110°C eine Stunde gehalten, sodann wird auf 230°C über einen Zeitraum von 3 Stunden erhitzt. Wasser (23 g) wird entfernt. Das Gemisch wird auf 100°C abgekühlt und filtriert.

Beispiel 10

[0059] Ein Zweiliter-Dreihalskolben wird mit Propylyatetramer-substituiertem Bernsteinäureanhydrid (592 g), Glycerin (384 g), Toluol (300 ml) und p-CH₃C₆H₄SO₃H₂O (10 g) beschickt. Das Gemisch wird auf Rückfluss unter Rühren und einer Stickstoffspülung (0,05 Standardkubikfüß pro Stunde) erhitzt und bei Rückfluss 3 Stunden gehalten. Die Temperatur erhöht sich von 120°C auf 135°C während dieses Zeitraums. Wasser (40 g) und
Toluol (150 ml) werden entfernt. Die Temperatur wird auf 90°C abgekühlt und eine 50%ige wässrige Lösung an NaOH (4,3 g) wird tropfenweise unter Rühren zugegeben. Das Gemisch wird 15 Minuten gerührt. Toluol wird von dem Gemisch bei 110°C und 15 mmHg abgestreift. Das Gemisch wird filtriert.

Emulsionen

[0061] Die organisiche Phase der Emulsionen kann auf einer stark verschiedenartigen Gruppe von Ölen basieren, einschließlich natürlicher Öle, synthetischer Öle und Gemischen davon. Die natürlichen Öle beinhalten Tieröle und Pflanzenöle (z.B. Castoröl, Lardöl) als auch Mineralöle wie flüssige Petroleumöle und Lösungsmittel-behandelte oder Säure-behandelte Mineralöle der paraffinischen, naphthenischen oder gemischten paraffinisch-naphthenischen Typen. Öle, die sich von Kohle oder Schiefer ableiten, sind auch verwendbar. Synthetische Öle beinhalten Kohlenwasserstoffe und Halogen-substituierte Kohlenwasserstoffe wie polymerisierte und copolymerisierte Olefine (z.B. Polybutylene, Polypropylene, Propylen-Isobutylen-Copolymer, chlorierte Polybutylene, etc.), Poly(1-hexene), Poly(1-octene), Poly(1-decene), etc. und Gemische davon, Alkylbenzole (z.B. Dodecybenzole, Tetradecylbenzole, Dinonylbenzole, Di(2-Ethylhexyl)benzole, etc.), Polyphenyle (z.B. Biphényle, Terphenyle, alkylierte Polyphenyle, etc.), alkylierte Diphenylether und alkylierte Diphénylsulfide und die Derivate, Analoga und Homologen davon und dergleichen.

[0062] Alkylenoxid-Polymer und -Copolymer und Derivate davon, bei denen die terminalen Hydroxygruppen durch Veresterung, Veretherung, etc. modifiziert wurden, bilden eine weitere Klasse von bekannten synthetischen Ölen, die verwendet werden können. Beispiele für diese sind die Öle, die durch Polymerisation von Ethylenoxid oder Propylenoxid hergestellt werden, die Alkyl- und Aleylerther dieser Polyoxalkylenen-Polymer (z.B. Methylpolyisopropylenylekether mit einem durchschnittlichen Molekulargewicht von etwa 1000, Diphenylether mit Polyethylenylglykol mit einem Molekulargewicht von etwa 500 bis 1000, Diethylerther von Polypropylenylglykol mit einem Molekulargewicht von etwa 1000 bis 1500, etc.) oder Mono- und Polycarbonsäureester davon, z.B. die Essigsäureester, gemischten C_{3-8}-Fettsäureester oder die C_{10}-Oxosäurediester von Tetraethylenylglykol.

[0064] Ester, die als synthetische Öle verwendbar sind, beinhalten auch diejenigen, die aus C_{3-8}-Mono-carbonsäuren und Polyolen und Polyolethern wie Neopentylglykol, Trimethylolpropan, Pentakerythrit, Dipentaerythrit, Triptentaerythrit, etc. hergestellt werden.
Öle auf Siliciumbasis wie die Polyalkyl-, Polyaryl-, Polyalkoxy- oder Polyaryloxy-Siloxanöle und -Silicatöle umfassen eine weitere geeignete Klasse von synthetischen Schmiermitteln (z.B. Tetraethylsilicat, Tetraethylsiloxan, Tetra(2-ethylhexyl)silicat, Tetra(4-methylhexyl)silicat, Tetra(p-tet-butylphenyl)silicat, Hexyl(4-methyl-2-pentox)dißiloxan, Poly(methylsiloxane), Poly(methylphenylsiloxane), etc.). Andere synthetische Öle beinhalten flüssige Ester von phosphorhaltigen Säuren (z.B. Tricresylphosphat, Trioctylphosphat, Diethylster von Decanphosphonsäure, etc.), polymerische Tetrahydrofurane und dergleichen.

Unraffinierte, raffinierte und wieder raffinierte Öle, entweder natürlich oder synthetisch (sowie Gemische von zwei oder mehreren jeglichen von diesen) des hierin vorstehend beschriebenen Typs, können verwendet werden. Unraffinierte Öle sind diejenigen, die direkt aus einer natürlichen oder synthetischen Quelle ohne eine weitere Aufreinigungsbehandlung erhalten werden. Zum Beispiel wäre ein Schieferöl, dass direkt aus einem Retortenbetrieb erhalten wird, ein Petroleumöl, das direkt von einer primären Destillation erhalten wird, oder ein Esteröl, das direkt von einem Veresterungsverfahren erhalten und ohne eine weitere Behandlung verwendet wird, ein unraffiniertes Öl. Raffinierte Öle sind ähnlich zu den unraffinierten Ölen, mit der Ausnahme, dass sie in einem oder mehreren Aufreinigungsschritten weiter behandelt wurden, um eine oder mehrere Eigenschaften zu verbessern. Viele solche Aufreinigungsverfahren sind dem Fachmann bekannt, wie Lösungsmittelextraktion, sekundäre Distillation, Säure- oder Basenextraktion, Filtration, Perkolation, etc. Wieder raffinierte Öle werden durch Verfahren erhalten, die zu denjenigen ähnlich sind, die verwendet werden, um raffinierte Öle zu erhalten, und auf raffinierte Öle angewendet werden, die bereits in Gebrauch waren. Solche wiederraffinierten Öle sind auch als regenerierte oder wiederaufbereitete Öle bekannt und sie werden häufig zusätzlich durch Verfahren behandelt, die auf eine Entfernung von verbrauchten Additiven und Ölabbauprodukten gerichtet sind.

Sprengstoffemulsionen

Die Sprengstoffemulsionen beinhalten Wasser-in-Öl-Emulsionen, die eine diskontinuierliche Oxidationsmittelphase, die Wasser und mindestens eine Sauerstoff-zuführende Komponente umfasst, eine kontinuierliche organische Phase, die mindestens einen kohlenstoffhaltigen Brennstoff umfasst, und eine emulgierende Menge des erfindungsgemäßen Reaktionsprodukts umfasst.

Die kohlenstoffhaltigen Brennstoffe, die in den Sprengstoffemulsionen verwendbar sind, beinhalten die meisten Kohlenwasserstoffe, z.B. paraffinische, olefinische, naphtenische, aromatische, gesättigte oder ungesättigte Kohlenwasserstoffe und können in der Form eines Öls oder eines Wachses oder eines Gemisches davon vorliegen. Im Allgemeinen ist der kohlenstoffhaltige Brennstoff ein Wasser-unmiscbarer, emulgierbarer Kohlenwasserstoff, d.h. entweder flüssig oder bei einer Temperatur von bis zu etwa 95°C und in einer Ausführungsform zwischen etwa 40 bis etwa 75°C verflüssigbar. Ein jegliches der vorstehend beschriebenen natürlichen oder synthetischen Öle kann als der kohlenstoffhaltige Brennstoff verwendet werden.

Beispiele für geeignete Öle beinhalten ein weißes Mineralöl, das von Wilco Chemical Company unter der Handelsbezeichnung KAYDOL verfügbar ist, ein weißes Mineralöl, das von Shell unter der Handelsbezeichnung ONDINA erhältlich ist, und ein Mineralöl, das von Pennzoil unter der Handelsbezeichnung.

[0076] In einer Ausführungsform werden hohlraumhaltige Materialien mit geschlossenen Zellen als sensibilisierende Komponenten verwendet. Der Begriff "hohlraumhaltiges Material mit geschlossenen Zellen" wird hierin verwendet, um ein jegliches partikuläres Material zu betreffen, das hohle Hohlräume mit geschlossenen Zellen umfasst. Jeder Partikel des Materials kann ein oder mehrere geschlossene Zellen enthalten und die Zellen können ein Gas wie Luft enthalten oder können evakuiert oder teilweise evakuiert sein. In einer Ausführungsform wird ausreichend hohlraumhaltiges Material mit geschlossenen Zellen verwendet, um eine Dichte in der sich ergebende Emulsion von etwa 0,8 bis etwa 1,35 g/cm³ zu ergeben. Im Allgemeinen können die Sprengstoffemulsionen bis zu etwa 15 Gew.-% und in einer Ausführungsform etwa 0,25 bis etwa 15 Gew.-% des hohlraumhaltigen Materials mit geschlossenen Zellen enthalten. Geeignete hohlraumhaltige Materialien mit geschlossenen Zellen beinhalten diskrete Glassphären mit einer Partikelgröße von etwa 10 bis etwa 175 Mikrons. Im Allgemeinen kann die Schüttdichte solcher Partikel etwa 0,1 bis etwa 0,4 g/cm³ betragen. Geeignete Glassphären oder Mikrophasen, die verwendet werden können, sind die Mikrophasen, die von der 3M Company verkauft werden und die eine Partikelgröße von etwa 10 bis etwa 160 Mikrons und eine nominale größte Größe von etwa 60 bis 70 Mikrons und Dichten von etwa 0,1 bis etwa 0,4 g/cm³ aufweisen. Diese beinhalten Mikrophasen, die unter der Handelsbezeichnung CS5250/250 vertrieben werden. Andere geeignete Glassphären und Mikrophasen werden unter der Handelsbezeichnung ECCOSPHERES von Emerson & Cumming, Inc. verkauft und weisen in Allgemeinen eine Partikelgröße von etwa 44 bis etwa 175 Mikrons und eine Schüttdicthe von etwa 0,15 bis etwa 0,4 g/cm³ auf. Andere geeignete Mikrophasen beinhalten die anorganischen Mikrophasen, die unter der Handelsbezeichnung CQ-CEL von Philadelphia Quartz Company verkauft werden. Das hohlraumhaltige Material mit geschlossenen Zellen kann durch inerte oder reduzierende Materialien hergestellt werden. Zum Beispiel können Phenol-Formaldehyd-Mikrophasen verwendet werden. Falls die Phenol-Formaldehyd-Mikrophasen verwendet werden, sind die Mikrophasen selbst eine Brennstoffkomponente für den Sprengstoff. Ein anderes hohlraumhaltiges Material mit geschlossenen Zellen, das verwendet werden kann, sind Saran-Mikrophasen, die von Dow Chemical Company verkauft werden. Die Saran-Mikrophasen weisen einen Dichtemessung von etwa 30 Mikrons und eine Partikeldichte von etwa 0,032 g/cm³ auf.

[0077] Gasblasen, die in situ dadurch hergestellt werden, dass zu der Zusammensetzung ein Gas-bildendes Material wie z.B. eine wässrige Lösung von Natriumnitrat gegeben und darin verteilt wird, können verwendet werden, um die Sprengstoffemulsionen zu sensibilisieren. Andere geeignete sensibilisierende Komponenten, die allein oder zusätzlich zu den vorstehenden verwendet werden können, beinhalten unlösende partikuläre

16/28
Tabelle I

<table>
<thead>
<tr>
<th>Produktnummer</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produkt von Beispiel 1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Produkt von Beispiel 7</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Mineralöl</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Wasser</td>
<td>14,6</td>
<td>14,6</td>
</tr>
<tr>
<td>Ammoniumnitrat</td>
<td>77,2</td>
<td>77,2</td>
</tr>
</tbody>
</table>

Emulsionsdüngemittel

[0084] Die kontinuierliche organische Phase, d.h. die Ölphase, die in den erfindungsgemäßen Emulsionsdüngemitteln verwendbar ist, kann Öl von einer Vielzahl von Quellen beinhalten, einschließlich natürlicher und synthetischer Öle und Gemischen davon, die zu den vorstehend beschriebenen ähnlich sind.

mittelkomponenten zu steuern. Reines Pflanzenöl oder Gemische von Pflanzenöl und Mineralölen können verwend werden, um die exakte Geschwindigkeit einer gewünschten Freisetzung zu erhalten.

<table>
<thead>
<tr>
<th>Tabelle II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produkt von Beispiel 1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Durasy 162 (Produkt von</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Pflanzenöl</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

18/28
DE 601 10 044 T2 2006.01.26

Mit Wasser gemischte Brennstoffe

[0093] In einer Ausführungsform ist der normalerweise flüssige Kohlenwasserstoffbrennstoff Benzin, d.h. ein Gemisch von Kohlenwasserstoffen mit einem ASTM-Destillationsbereich von etwa 60°C bei dem 10%-Destillationspunkt bis etwa 205°C bei dem 90%-Destillationspunkt.

[0096] Das erfindungsgemäße Reaktionsprodukt kann in dem mit Wasser gemischten Brennstoff bei einer Konzentration von etwa 0,05 bis etwa 15 Gew.-% und in einer Ausführungsform etwa 0,05 bis etwa 10 Gew.-% und in einer Ausführungsform etwa 0,05 bis etwa 5 Gew.-% und in einer Ausführungsform etwa 0,1 bis etwa 2 Gew.-% vorhanden sein.

geeignet sind die Amin- oder Ammoniumsalze (z.B. Ammoniumnitrat). Diese Additive können bei Konzentrationen von bis zu etwa 1 Gew.-% basierend auf dem Gesamtgewicht der mit Wasser gemischten Brennstoffzusammensetzungen, und in einer Ausführungsform etwa 0,01 bis etwa 1 Gew.-% verwendet werden.

Tabelle III

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produkt von 1</td>
<td>0,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beispiel 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produkt von 2</td>
<td>-</td>
<td>0,8</td>
<td>-</td>
</tr>
<tr>
<td>Beispiel 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produkt von 3</td>
<td>-</td>
<td>-</td>
<td>0,8</td>
</tr>
<tr>
<td>Beispiel 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieselbrennstoff</td>
<td>79,6</td>
<td>79,6</td>
<td>79,6</td>
</tr>
<tr>
<td>Wasser</td>
<td>19,6</td>
<td>19,6</td>
<td>19,6</td>
</tr>
</tbody>
</table>

Schmierrmittel und/oder funktionelle Flüssigkeiten

[0103] Diese funktionellen Additive können bestimmte feste Schmierrmittel wie Graphit, Molybdändisulfid und
Polytetrafluorethyliden und verwandte feste Polymere enthalten.

[0111] In einer Ausführungsform enthalten die erfindungsgemäßen Emulsionen (insbesondere diejenigen, die beim Schneiden oder Formen von Metall verwendet werden) mindestens ein Polymethacrylat in Wasser. Solche Polyme sind diejenigen, die weniger löslich werden, wie sich die Temperatur des Wassers erhöht. Sie können als Oberflächenschmiermittel während Schneide- oder Bearbeitungsvorgängen fungieren, da, wie die Flüssigkeit als ein Ergebnis der Reibung zwischen einem Metallarbeitsstück und einem Arbeitswerkzeug erhitzen wird, das Polymethacrylat in Wasser die Oberfläche des Arbeitsstücks "beschichtet", was folglich dessen Schmierigkeiten verbessert.

[0114] Beispielhafte Hydraulikflüssigkeiten werden in der Tabelle IV bereitgestellt. In der Tabelle IV sind alle numerischen Werte in Gewichtsteilen angegeben.

<table>
<thead>
<tr>
<th>Tabelle V</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Produkt von Beispiel 1</td>
</tr>
<tr>
<td>Produkt von Beispiel 7</td>
</tr>
<tr>
<td>Mineralöl</td>
</tr>
<tr>
<td>37%ige wässrige Chlorwasserstoffsäurelösung</td>
</tr>
</tbody>
</table>

Patentansprüche

1. Zusammensetzung, die ein teilweise dehydratisiertes Produkt umfasst, hergestellt durch:
(I) Umsetzen (A) einer Hydrocarbaryl-substituierten Bernsteinsäure oder eines Anhydrids mit (B) einem Polyl, einem Polyamin, einem Hydroxyamin oder einem Gemisch von zwei oder mehreren davon, um ein erstes Zwischenprodukt zu bilden, das umfasst: einen Ester, Teilester oder ein Gemisch davon, wenn (B) ein Polyl ist, ein Amid, Imid, Salz, Amid/Salz, Teilmid oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Polylamin ist, oder einen Ester, Teilester, ein Amid, Teilmid, Amid/Salz, Imid, Ester/Salz, Salz oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Hydroxyamin, ein Gemisch eines Polyols und eines Polyamins, ein Gemisch eines Polyols und eines Hydroxyamins, ein Gemisch eines Polyamins und eines Hydroxyamins oder ein Gemisch eines Polyols, eines Polyamins und eines Hydroxyamins ist, wobei der Hydrocarbarylsubstiut-
ent der Säure oder des Anhydrids durchschnittlich 8 bis 200 Kohlenstoffatome aufweist, und
(II) Erhitzen des ersten Zwischenprodukts bei einer wirksamen Temperatur, um ein zweites Zwischenprodukt zu bilden, wobei Reaktionswasser gebildet wird, und Abtrennen eines Teils des Reaktionswassers von dem zweiten Zwischenprodukt, um das teilweise dehydratisierte Produkt zu bilden, wobei, wenn (A) das Bernstein-
säureanhydrid ist, die Menge an Reaktionswasser, die abgetrennt wird, 0,2 bis 0,9 mol des Reaktionswassers pro Äquivalent des Bernsteinsäureanhydrids beträgt, wenn (A) die Bernsteinsäure ist, die Menge an Reaktions-
wasser, die abgetrennt wird, 1,2 bis 1,9 mol des Reaktionswassers pro Äquivalent der Bernsteinsäure be-
trägt, wobei das teilweise dehydratisierte Produkt eine Gesamtäsüerezahl von 20 bis 100 mg an KOH/g auf-
weist.

2. Zusammensetzung nach Anspruch 1, wobei der Hydrocarbarylsubstiuent durchschnittlich 18 bis 30 Koh-
lenstoffatome aufweist.

3. Zusammensetzung nach Anspruch 1, wobei ein Gemisch von mindestens zwei Hydrocarbaryl-substitui-
ten Bernsteinsäuren oder Anhydriden verwendet wird, wobei der Hydrocarbarylsubstiuent einer/ eines der Säu-
ren oder Anhydride durchschnittlich 12 bis 24 Kohlenstoffatome aufweist und der Hydrocarbarylsubstiut-
ent der/des anderen der Säuren oder Anhydride durchschnittlich 60 bis 200 Kohlenstoffatome aufweist.

4. Zusammensetzung nach Anspruch 1, wobei die Hydrocarbaryl-substituierte Bernsteinsäure oder das An-
hydrid aus Hydrocarbarylsubstituentengruppen und Bernsteinsäuregruppen besteht und durch das Vorhan-
densein innerhalb ihrer/seiner Struktur von mindestens 1,3 Bernsteinsäuregruppen für jedes Äquivalentge-
wicht des Hydrocarbyls substituenten gekennzeichnet ist.

5. Zusammensetzung nach Anspruch 1, wobei das Polyol eine Verbindung der Formel

\[R-(\text{OH})_m \]

ist, worin in Formel (I) \(R \) eine organische Gruppe mit einer Valenz von \(m \) ist, \(R \) an die OH-Gruppen über Kohlenstoff-Sauerstoff-Bindungen gebunden ist und \(m \) eine ganze Zahl von 2 bis 10 ist.

6. Zusammensetzung nach Anspruch 1, wobei das Polyol ein Glykol, ein Polyoxyalkylenglykol, ein Kohlenhydrat oder ein teilweise veresterter Polyalkohol ist.

7. Zusammensetzung nach Anspruch 1, wobei das Polyol Ethylenlykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Propylenlykol, Diproplenglykol, Tripolyprlyenglykol, Dibutylenglykol, Tributylenglykol, 1,2,Butandiol, 2,3-Dimethyl-2,3-butandiol, 2,3-Hexandiol, 1,2-Cyclohexandiol, Pentaerythrit, Dipentaerythrit, 1,7-Heptandiol, 2,4-Heptandiol, 1,2,3-Hexantriol, 1,2,4-Hexantriol, 1,2,5-Hexantriol, 2,3,4-Hexantriol, 1,2,3,4-Butantriol, 1,2,4-Butantriol, 2,2,6,6-Tetrakis(hydroxymethyl)cyclohexanol, 1,10-Decandiol, Digitalose, 2-Hydroxymethyl-2-methyl-1,3-propanolid (Trimethylethanol) oder 2-Hydroxymethyl-2-ethyl-1,3-propanolid (Trimethylolpropan) ist.

8. Zusammensetzung nach Anspruch 1, wobei das Polyol ein Zucker, eine Stärke oder ein Gemisch davon ist.

9. Zusammensetzung nach Anspruch 1, wobei das Polyol Erythrit, Threitol, Adonitol, Arabitol, Xylitol, Sorbitol, Mannitol, Erythrose, Fucose, Ribose, Xylulose, Arabinose, Xylose, Glycose, Fructose, Sorbose, Mannose, Sorbitan, Glucosamin, Sucrose, Rhamnose, Glyceraldehyd oder Galactose ist.

10. Zusammensetzung nach Anspruch 1, wobei das Polyol eine Verbindung der Formel

\[\text{HO(CH}_2\text{CH(OH)CH}_2\text{O)}_n\text{H} \]

ist, worin \(n \) eine Zahl von 1 bis 5 ist.

11. Zusammensetzung nach Anspruch 1, wobei das Polyol ein Polyalkohol mit mindestens drei Hydroxylgruppen ist, wobei einige der Hydroxygruppen mit einer aliphatischen Monocarbonsäure mit 8 bis 30 Kohlenstoffatomen verestert sind, wobei mindestens zwei der Hydroxygruppen nicht verestert sind.

13. Zusammensetzung nach Anspruch 1, wobei das Polyamin eine aliphatische, cycloaliphatische, heterocyclische oder aromatische Verbindung ist.

14. Zusammensetzung nach Anspruch 1, wobei das Polyamin eine Verbindung der Formel

\[\text{HN} - (\text{Alkylen-N})_n\text{R} \]

ist, worin \(n \) einen durchschnittlichen Wert von 1 bis 10 aufweist, die Alkyengruppe 1 bis 10 Kohlenstoffatome aufweist und jede Gruppe \(R \) unabhängig ein Wasserstoffatom oder eine aliphatische oder Hydroxy-substituierte aliphatische Gruppe mit bis zu 30 Kohlenstoffatomen ist.

15. Zusammensetzung nach Anspruch 1, wobei das Polyamin Ethylendiamin, Triethylentetramin, Tris(2-aminoethyl)amin, Propyldiamin, Trimethylendiamin, Tripropylylentetramin, Tetraethylpentammin, Hexaethylheptammin, Pentaethylhexammin oder ein Gemisch von zwei oder mehreren davon ist.

16. Zusammensetzung nach Anspruch 1, wobei das Polyamin ein Ethylenpolyamin ist.

17. Zusammensetzung nach Anspruch 1, wobei das Polyamin ein heterocyclisches Amin ist.
18. Zusammensetzung nach Anspruch 1, wobei das Hydroxyamin (a) ein N-(Hydroxyl-substituierte Hydrocarbylgruppe)amin, (b) ein Hydroxyl-substituiertes Poly(hydrocarbyloxy)-Analogen von (a) oder ein Gemisch von (a) und (b) ist.

19. Zusammensetzung nach Anspruch 1, wobei das Hydroxyamin ein Alkanolamin mit 1 bis 40 Kohlenstoffatomen ist.

20. Zusammensetzung nach Anspruch 1, wobei das Hydroxyamin ausgewählt ist aus der Gruppe bestehend aus (a) primären, sekundären oder tertiären Alkanolaminen entsprechend jeweils den Formeln

\[
\begin{align*}
\text{(b) Hydroxyl-substituierten Poly(hydrocarbyloxy)-Analoga der primären, sekundären oder tertiären Alkanolaminen entsprechend jeweils den Formeln}
\end{align*}
\]

worin jede Gruppe R unabhängig eine Hydrocarbylgruppe mit 1 bis 8 Kohlenstoffatomen oder eine Hydroxyl-substituierte Hydrocarbylgruppe mit 2 bis 8 Kohlenstoffatomen ist, jede Gruppe R' unabhängig eine bivalente Kohlenwasserstoffgruppe mit 2 bis 18 Kohlenstoffatomen ist und jedes x unabhängig einen Wert von 2 bis 15 aufweist und

(c) Gemischen von zwei oder mehreren von jeglichen der Vorstehenden.

21. Zusammensetzung nach Anspruch 1, wobei (B) Glycerin, Diethanolamin, Triethanolamin oder ein Gemisch von zwei oder mehreren davon ist.

22. Zusammensetzung nach Anspruch 1, wobei das Verhältnis von Äquivalenten an Komponente (A) zu denjenigen von Komponente (B) 3:1 bis 1:2 beträgt.

23. Zusammensetzung nach Anspruch 1, die ein teilweises dehydratisiertes Produkt umfasst, hergestellt durch:
 (I) Umsetzen (A) einer Hydrocarbyl-substituierten Bernsteinsäure oder eines Anhydrids mit (B) einem Poly-
min, einem Hydroxyamin, einem Gemisch eines Polyols und eines Polyamins, einem Gemisch eines Polyols und eines Hydroxamins, einem Gemisch eines Polyamins und eines Hydroxamins oder einem Gemisch eines Polyols, eines Polyamins und eines Hydroxamins, um ein erstes Zwischenprodukt zu bilden, das umfasst: ein Amid, Imid, Salz, Amid/Salz, Teilamid oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Polyamin ist, oder einen Ester, Teester, ein Amid, Teilamid, Amid/Salz, Amid, Ester/Salz, Salz oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Hydroxyamin, ein Gemisch eines Polyols und eines Polyamins, ein Gemisch eines Polyols und eines Hydroxamins, ein Gemisch eines Polyamins und eines Hydroxamins oder ein Gemisch eines Polyols, eines Polyamins und eines Hydroxamins ist, wobei der Hydrocarbarylstituent der Säure oder des Anhydrids durchschnittlich 8 bis 200 Kohlenstoffatome aufweist, und

(II) Erhitzen des ersten Zwischenprodukts bei einer wirksamen Temperatur, um ein zweites Zwischenprodukt zu bilden, wobei Reaktionswasser gebildet wird, und Abtrennen eines Teils des Reaktionswassers von dem zweiten Zwischenprodukt, um das teilweise dehydratisierte Produkt zu bilden, wobei, wenn (A) das Bernstein säureanhydrid ist, die Menge an Reaktionswasser, die abgetrennt wird, 0,2 bis 0,9 mol des Reaktionswassers pro Äquivalent des Bernstein säureanhydrids beträgt, wenn (A) die Bernsteinsäure ist, die Menge an Reaktionswasser, die abgetrennt wird, 1,2 bis 1,9 mol des Reaktionswassers pro Äquivalent der Bernsteinsäure beträgt, wobei das teilweise dehydratisierte Produkt eine Gesamtsäurezahl von 20 bis 100 mg an KOH/g aufweist.

24. Verfahren, das umfasst:
(I) Umsetzen (A) einer Hydrocarbaryl-substituierten Bernsteinsäure oder eines Anhydrids mit (B) einem Polyol, einem Polyamin, einem Hydroxyamin oder einem Gemisch von zwei oder mehreren davon, um ein erstes Zwischenprodukt zu bilden, das umfasst: einen Ester, Teester oder ein Gemisch davon, wenn (B) ein Polyol ist, ein Amid, Imid, Salz, Amid/Salz, Teilamid oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Polyamin ist, oder einen Ester, Teester, ein Amid, Teilamid, Amid/Salz, Imid, Ester/Salz, Salz oder ein Gemisch von zwei oder mehreren davon, wenn (B) ein Hydroxyamin, ein Gemisch eines Polyols und eines Polyamins, ein Gemisch eines Polyols und eines Hydroxamins, ein Gemisch eines Polyamins und eines Hydroxamins oder ein Gemisch eines Polyols, eines Polyamins und eines Hydroxamins ist, wobei der Hydrocarbarylstituent der Säure oder des Anhydrids durchschnittlich 8 bis 200 Kohlenstoffatome aufweist, und
(II) Erhitzen des ersten Zwischenprodukts bei einer wirksamen Temperatur, um ein zweites Zwischenprodukt zu bilden, wobei Reaktionswasser gebildet wird, und Abtrennen eines Teils des Reaktionswassers von dem zweiten Zwischenprodukt, wobei, wenn (A) das Bernstein säureanhydrid ist, die Menge an Reaktionswasser, die abgetrennt wird, 0,2 bis 0,9 mol des Reaktionswassers pro Äquivalent des Bernstein säureanhydrids beträgt, wenn (A) die Bernsteinsäure ist, die Menge an Reaktionswasser, die abgetrennt wird, 1,2 bis 1,9 mol des Reaktionswassers pro Äquivalent der Bernsteinsäure beträgt, wobei das teilweise dehydratisierte Produkt eine Gesamtsäurezahl von 20 bis 100 mg an KOH/g aufweist.

25. Konzentrat, das 10 bis 90 Gew.-% eines normalerweise flüssigen organischen Verdünnungsmittels und die Zusammensetzung nach Anspruch 1 umfasst.

26. Emulsion, die eine organische Phase, eine wässrige Phase und eine emulgierende Menge der Zusammensetzung nach Anspruch 1 umfasst.

27. Emulsion nach Anspruch 26, die eine kontinuierliche organische Phase, eine diskontinuierliche wässrige Phase und eine emulgierende Menge der Zusammensetzung nach Anspruch 1 umfasst.

28. Emulsion nach Anspruch 26, die eine Emulsion mit starker innerer Phase ist, umfassend: eine kontinuierliche organische Phase, eine diskontinuierliche wässrige Phase und eine emulgierende Menge der Zusammensetzung nach Anspruch 1, wobei das Gewichtsverhältnis der wässrigen Phase zu der organischen Phase mindestens 4:1 beträgt.

29. Emulsion nach Anspruch 26, die eine Sprengstoffemulsion ist, umfassend: eine diskontinuierliche Oxidationsmittelphase, die Wasser und eine Sauerstoff zuführende Komponente umfasst, eine kontinuierliche organische Phase, die einen kohlenstoffhaltigen Brennstoff umfasst, und eine emulgierende Menge der Zusammensetzung nach Anspruch 1.

30. Emulsion nach Anspruch 26, die ein Emulsionsdüngemittel ist, umfassend: eine diskontinuierliche wässrige Düngemittelphase, die mindestens eine wasserlösliche Düngemittelkomponente umfasst, eine kontinuierliche organische Phase, die mindestens ein Öl umfasst, und eine emulgierende Menge der Zusammensetzung nach Anspruch 1.
31. Emulsion nach Anspruch 26, die eine wassergemischte Brennstoffzusammensetzung ist, umfassend: eine diskontinuierliche wässrige Phase, eine kontinuierliche Brennstoffphase, die einen normalerweise flüssigen Kohlenwasserstoffbrennstoff umfasst, und eine emulгиerende Menge der Zusammensetzung nach Anspruch 1.

32. Emulsion nach Anspruch 26, die ein Schmiermittel oder eine funktionelle Flüssigkeit ist, umfassend: eine Ölphase, eine wässrige Phase, eine emulгиerende Menge der Zusammensetzung nach Anspruch 1 und mindestens ein funktionelles Additiv.

33. Emulsion nach Anspruch 26, die eine ansäurende Flüssigkeit ist, umfassend: eine kontinuierliche Ölphase, eine diskontinuierliche wässrige Phase, eine emulгиerende Menge der Zusammensetzung nach Anspruch 1 und eine nicht oxidierende Säure.

Es folgt kein Blatt Zeichnungen