Übersetzung der europäischen Patentschrift

EP 0 371 299 B1

DE 689 09 009 T 2

Deutsches Aktenzeichen: 689 09 009.9
Europäisches Aktenzeichen: 89 120 889.4
Europäischer Anmeldetag: 10. 11. 89
Erstveröffentlichung durch das EPA: 6. 6. 90
Veröffentlichungstag der Patenterteilung beim EPA: 8. 9. 93
Veröffentlichungstag im Patentblatt: 7. 4. 94

Unionspriorität: 11.11.88 JP 285173/88 09.03.89 JP 57174/89

Patentinhaber: NKK Corp., Tokio/Tokyo, JP

Vertreter: Eitle, W., Dipl.-Ing.; Hoffmann, K., Dipl.-Ing. Dr.reer.nat.; Lehn, W., Dipl.-Ing.; Füchsle, K., Dipl.-Ing.; Hansen, B., Dipl.-Chem. Dr.reer.nat.; Brauns, H., Dipl.-Chem. Dr.reer.nat.; Görg, K., Dipl.-Ing.; Kohlmann, K., Dipl.-Ing.; Ritter und Edler von Fischern, B., Dipl.-Ing.; Kolb, H., Dipl.-Chem. Dr.reer.nat., Pat.-Anwälte; Nette, A., Rechtsanw., 81925 München

Benannte Vertragstaaten: DE, FR, GB

Verfahren zur Herstellung von Ferrocrom mit niedrigem Kohlenstoffgehalt und hohem Chromgehalt.

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde vom Deutschen Patentamt inhaltlich nicht geprüft.
BESCHREIBUNG

Als Verfahren des Standes der Technik zur Herstellung von Ferrochrom hoher Reinheit mit hohem Chromgehalt werden hauptsächlich (a) das Perrin-Verfahren, (b) das Schwedische Verfahren, (c) das mehrstufige Perrin-Verfahren sowie (d) weitere Verfahren genannt. Unter diesen Verfahren sind die Verfahren (a) und (b) als wirtschaftliche Verfahren bekannt, wobei Ferrochrom hoher Reinheit in großen Mengen durch Einsatz eines Elektroofens hergestellt wird. Das Verfahren (c) ist ein Verfahren, wobei Eisen aus Chromerz unter schwach reduzierenden Bedingungen entfernt wird, nachdem die Primärschlacke des Chromerzes geschmolzen worden ist, und es
wird ein Ferrochrom niedrigen Kohlenstoffgehalts erhalten, indem man schließlich die Sekundärschmelze kräftig reduziert. Bei diesem Verfahren kann Ferrochrom niedrigen Kohlenstoffgehalts, das einen hohen Gehalt von 85 bis 90 Gew.% Chrom aufweist, erhalten werden. Ferner wird das Aluminiumthermit-Verfahren als eines der weiteren Verfahren (d) betrachtet.

Chromerz, das als Ausgangsmaterial wirtschaftlich erhältlich ist, weist einen hohen Gehalt an Fe auf. Demzufolge weist beim genannten Perrin-Verfahren (a) und dem Schwedischen Verfahren (b) der erhaltene Ferrochrombestandteil niedrigen Kohlenstoffgehalts die Höchstgrenze von 72 Gew.% Chrom auf. Beim mehrstufigen Perrin-Verfahren (c) kann Ferrochrom mit einem hohen Gehalt an Cr erhalten werden. Es treten jedoch beim mehrstufigen Perrin-Verfahren (c) insofern Schwierigkeiten auf, als geschmolzenes Metall mit hohem Schmelzpunkt beim Herstellungsverfahren nur schwer handhabbar ist, Ferrochrom niedrigen Kohlenstoffgehalts mit einem niedrigen Gehalt an Cr, welches in großen Mengen erzeugt wird, verarbeitet werden muß und eine Vielzahl von Verunreinigungen wie Si, O, N oder dgl. in den Produkten enthalten ist.

Aufgabe der vorliegenden Erfindung ist es, die oben genannten Schwierigkeiten bei Verfahren zur Herstellung von Ferrochrom zu überwinden und ein Verfahren zur Herstellung von Ferrochrom mit niedrigem Kohlenstoffgehalt, das einen hohen Gehalt von 70 bis 99 Gew.% Chrom aufweist, anzugeben.

Zur Lösung der vorliegenden Aufgabe wird durch die vorliegende Erfindung ein Herstellungsverfahren für Ferrochrom mit niedrigem Kohlenstoff- und hohem Chromgehalt von 70 bis 99% zur Verfügung gestellt, wobei man:
Ferrochrom-Materialien mit niedrigem Kohlenstoffgehalt mindestens einmal nitridiert und zerkleinert, und zwar unter Erhalt von zerkleinertem Ferrochromnitrid;

das genannte Ferrochromnitrid einer sauren Behandlung unterzieht, und zwar unter Rühren des genannten Ferrochromnitrilds in einer sauren Lösung, wobei man Ferrochromnitrid erhält, aus dem Eisen entfernt worden ist;

und das genannte Ferrochromnitrid, aus dem Eisen entfernt worden ist, nach Erhitzen des genannten Nitrides im Vakuum denitriadiert.

Bevorzugte Ausgestaltungen der Erfindung sind in den Ansprüchen 2 bis 6 offenbart.

Die obigen Gegenstände und weitere Gegenstände und Vorteile der vorliegenden Erfindung werden aus der folgenden detaillierten Beschreibung, zusammen mit den beigefügten Zeichnungen, ersichtlich.

Fig. 1 und 2 sind schematische Darstellungen, die jeweils verschiedene Arten von Rührverfahren bei der Säurebehandlung in den Beispielen der vorliegenden Erfindung zeigen; und

Fig. 3 und 4 sind schematische Darstellungen, die jeweils verschiedene Rührverfahren zum Vergleich zeigen.

Das Herstellungsverfahren von Ferrochrom mit niedrigem Kohlenstoff- und hohem Chromgehalt gemäß der vorliegenden Erfindung umfaßt Stufen, in denen man Ferrochrom niedrigen Kohlenstoffgehalts mindestens einmal nitridiert und
zerkleinert, wobei zerkleinertes Ferrochromnitrid erhalten wird; man das genannte Ferrochromnitrid einer sauren Behandlung unterzieht, indem das genannte Ferrochromnitrid in einer sauren Lösung gerührt wird, wobei Ferrochromnitrid, aus dem Eisen entfernt worden ist, erhalten wird, und man das genannte Ferrochromnitrid, aus dem Eisen entfernt worden ist, denitridiert, indem man das genannte Ferrochromnitrid im Vakuum erhitzt.

\[\text{Cr}_2\text{N} \ (s) \rightarrow 2\text{Cr} \ (s) + 1/2 \text{N}_2 \ (g) \]
\[\text{C} \ (s) + \text{O} \ (s) \rightarrow \text{CO} \ (g) \]

In den obigen Gleichungen bedeuten (s) einen Feststoff und (g) ein Gas. Diese Definitionen werden nachfolgend beibehalten. Auf diese Weise erhaltenes Ferrochrom ist ein Ferrochrom hoher Reinheit, das einen hohen Gehalt an Cr enthält.
In dieser bevorzugten Ausgestaltungsform wird Ferrochrom mit niedrigem Kohlenstoffgehalt, enthaltend 50 Gew.% Cr oder mehr und 1 Gew.% C oder weniger, als Ausgangsmaterial eingesetzt, das Material ist allerdings nicht auf ein solches Ferrochrom eingeschränkt, was vom Angebot an Ausgangsmaterialien abhängt. Enthält das Ferrochrom niedrigen Kohlenstoffgehalts, 50% Cr oder weniger, steigt die Menge an Fe an, die durch die Säurebehandlung zu entfernen ist. Dies senkt die Wirksamkeit bei der Entfernung der Metallphase ab. Übersteigt der Gehalt an C im Ferrochrom niedrigen Kohlenstoffgehalts 1 Gewichtsprozent, läuft die Nitridierung des Ferrochroems niedrigen Kohlenstoffgehalts nicht glatt ab. Das genannte Ferrochrom niedrigen Kohlenstoffgehalts wird mechanisch in Partikel von 5 mm oder weniger zerkleinert. Diese Partikel von Ferrochrom niedrigen Kohlenstoffgehalts werden in einem Vakuumherzuchtsofen durch Anwendung eines Feststoff-Nitrierverfahrens nitriert. Das Vakuum kann 0,1 Torr aufweisen, und die Temperatur im Vakuumherzuchtsofen beträgt 1000 bis 1300°C. Stickstoffgas wird in den Vakuumherzuchtsofen eingeleitet, um Ferrochrom niedrigen Kohlenstoffgehalts zu nitridieren.

Das auf diese Weise erhaltene Ferrochromnitrid enthält annähernd 7 Gew.% N. Wird das genannte Ferrochromnitrid unter einem Scannerelektronenmikroskop betrachtet, ist es ersichtlich, daß das genannte Ferrochromnitrid aus zwei Phasen besteht, von denen die eine eine Nitridphase von 77 bis 81 Gew.% Cr und die andere eine Metallphase sind, enthaltend Fe, 10 bis 20 Gew.% Chrom, Si, Co, worin Fe Hauptbestandteil ist. Das meiste der genannten Metallphase wird durch Zerkleinerung des Ferrochromnitrids in Partikel von 3 mm oder weniger und Säurebehandlung der Ferrochromnitrid-Partikel entfernt, und es wird die Nitridphase gewonnen.

Verschiedene Beispiele der vorliegenden Erfindung werden nun nachfolgend spezifisch beschrieben.

Beispiel 1

30 kg Ferrochrom niedrigen Kohlenstoffgehalts mit einer Partikelgröße von 3 mm oder weniger, das eine Zusammensetzung wie in Tabelle 1-(1) aufweist, wurden nitridiert, und es wurden 32,3 kg Ferrochromnitrid (Tabelle 1-(2)) erhalten. Das genannte Ferrochromnitrid wurde in Partikel von 3 mm oder weniger zerkleinert. 15 kg Ferrochromnitrid-Partikel wurden in 60 l wässrige 3N H₂SO₄-Lösung gegeben und der sauren Behandlung unterzogen, indem 48 h lang gerührt wurde. Danach wurden durch Waschen und Trocknen 10,5 kg Ferrochromnitrid erhalten. Die Zusammensetzung des genannten Ferrochromnitrids ist in Tabelle 1-(3) angegeben. Des weiteren wurden 0,4 Gew. %
Kohlenstoffruß dem oben genannten Ferrochromnitrid zugefügt und damit vermischt. 10,0 kg Mischung aus Ferrochromnitrid und Kohlenstoffruß wurden durch eine Vakuumbehandlung bei 1250°C über 24 h denitrigiert. Als Ergebnis wurden Klumpen von Ferrochrom mit niedrigem Kohlenstoffgehalt erhalten, das hohe Prozentsätze an Cr enthielt, wie in Tabelle 1-(4) angegeben. FCr in Tabelle 1 ist eine Abkürzung für Ferrochrom, und diese Bezeichnung wird in den folgenden Tabellen beibehalten.

<table>
<thead>
<tr>
<th>Komponenten (Gew.%)</th>
<th>(1) FCr mit niedrigem C-Gehalt</th>
<th>(2) FCr- Nitrid (Gew.%)</th>
<th>(3) FCr- Nitrid nach Säurebehandlung (Gew.%)</th>
<th>(4) FCr mit niedrigem C-Gehalt nach Denitrierung (Gew.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>61,5</td>
<td>57,2</td>
<td>77,2</td>
<td>87,1</td>
</tr>
<tr>
<td>Fe</td>
<td>36,5</td>
<td>33,9</td>
<td>11,0</td>
<td>12,1</td>
</tr>
<tr>
<td>N</td>
<td>0,04</td>
<td>6,9</td>
<td>10,3</td>
<td>0,003</td>
</tr>
<tr>
<td>O</td>
<td>0,10</td>
<td>0,15</td>
<td>0,54</td>
<td>0,032</td>
</tr>
<tr>
<td>C</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td>0,011</td>
</tr>
<tr>
<td>Si</td>
<td>0,72</td>
<td>0,68</td>
<td>0,20</td>
<td>0,23</td>
</tr>
<tr>
<td>P</td>
<td>0,016</td>
<td>0,016</td>
<td>0,016</td>
<td>0,017</td>
</tr>
<tr>
<td>S</td>
<td>0,008</td>
<td>0,009</td>
<td>0,013</td>
<td>0,015</td>
</tr>
<tr>
<td>Mn</td>
<td>0,18</td>
<td>0,17</td>
<td>0,12</td>
<td>0,14</td>
</tr>
<tr>
<td>V</td>
<td>0,13</td>
<td>0,12</td>
<td>0,13</td>
<td>0,14</td>
</tr>
<tr>
<td>Ti</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>Co</td>
<td>0,051</td>
<td>0,047</td>
<td>0,013</td>
<td>0,014</td>
</tr>
</tbody>
</table>

Beim Nitridieren und Zerkleinern von Ferrochrom niedrigen Kohlenstoffgehalts werden, wenn die Partikelgrößen von Ferrochrom mit niedrigem Kohlenstoffgehalt 3 mm übersteigen, die Nitridierzeit stark verlängert und das Nitridierverhältnis des Ferrochroems niedrigen
Kohlenstoffgehalts deutlich herabgesetzt. Betragen die Partikelgrößen von Ferrochrom 3 mm oder weniger, steigt die Wirksamkeit beim Entfernen der Metallphase durch die Säurebehandlung. Die Menge an erforderlicher Säure zur Säurebehandlung, z.B. bei Einsatz von Salzsäure, wird durch die folgenden Reaktionsgleichungen quantitativ berechnet:

\[
\begin{align*}
\text{Fe (s)} + 2\text{HCl (l)} & \rightarrow \text{FeCl}_2 (l) + \text{H}_2 (g) \\
\text{Cr (s)} + 3\text{HCl (l)} & \rightarrow \text{CrCl}_3 (l) + 3/2\cdot\text{H}_2 (g)
\end{align*}
\]

D.h., es ist eine Überschussmenge an Säure von 10 bis 30% HCl erforderlich, die in den obigen Gleichungen verbraucht wird. Beträgt die Konzentration an wässriger Säurelösung bei der Säurebehandlung weniger als 1N, steigt die Menge an wässriger Säurelösung an. Dies beeinflußt die Herstellkosten. Übersteigt die Konzentration an wässriger Säurelösung 3N, fallen eluierte Salze der Metallphase, z.B. FeCl₂, FeSO₄ und Hydrate von FeCl₂ und FeSO₄, aus. FeCl₂, FeSO₄ und Hydrate von FeCl₂ und FeSO₄ haften an den Partikeln der Nitridphase, welche mittels der Säurebehandlung zu gewinnen sind. Dies kann die Verfahrensstufen beim Waschen und der Gewinnung behindern.

Ist das Prozentverhältnis von Ferrochromnitrid in Gewichtsprozent von Ferrochromnitrid zu wässriger Säurelösung groß, werden die genannten Salze, deren Löslichkeit in der wässrigen Lösung übersteigen wird, erzeugt und fallen aus. Im Gegensatz dazu ist, wenn das Prozentverhältnis von Ferrochromnitrid in Gewichtsprozent von Ferrochromnitrid zur wässrigen Lösung klein ist, die Menge der wässrigen Säurelösung überschüssig groß. Deshalb wurde das Gewichtsverhältnis von Ferrochromnitrid zur wässrigen Lösung experimentell bestimmt.
Wie aus der obigen Beschreibung klar ersichtlich, wird die Menge an eluiertem Metallphase dadurch gesteuert, daß man die Konzentration an Säure (1N bis 3N) und die Menge an Ferrochromnitrid in der Säurebehandlungsstufe einstellt. Als Folge davon läßt sich der Gehalt an Cr in den Endprodukten ebenfalls einstellen.

Beispiel 2

Da Ferrochrom niedrigen Kohlenstoffgehalts (enthaltend 60 bis 70 Gew.% Cr), das zum industriellen Gebrauch leicht zu erhalten ist, hohe Duktilität und Festigkeit aufweist, sind Pulver aus Ferrochrom niedrigen Kohlenstoffgehalts durch Zerkleinern des Ferrochroms nur schwer zu erhalten, und die Partikelgrößen des Ferrochroms mit niedrigem Kohlenstoffgehalt betragen gewöhnlich 1 mm oder mehr im Minimum. Ferrochromnitrid, das durch Nitridieren des Ferrochroms niedrigen Kohlenstoffgehalts erhalten wird, enthält 8% Stickstoff oder weniger. Das Ferrochromnitrid weist eine Cr₂N-Form auf und läßt sich zerkleinern. Wird Ferrochromnitrid in Partikel von 0,3 mm oder weniger zerkleinert und erneut bei 800 bis 1200°C nitriert, erhöht sich der Gehalt an Stickstoff auf 10 bis 14%, und die Nitridphase nimmt eine CrN-Form an. Vergleicht man dieses CrN mit dem genannten Cr₂N, so ist die Menge an Fe, die in die Nitridphase diffundiert, in CrN kleiner als in Cr₂N. Weist demzufolge die Nitridphase eine CrN-Form, wird Fe leicht durch die Säurebehandlung entfernt, und man erhält Ferrochrom niedrigen Kohlenstoffgehalts, das kleine Prozentwerte an Cr enthält.

Ferrochromnitrid (Tabelle 1-(2)) von ~0,3 mm, erhalten beim Nitridieren und Zerkleinern von Ferrochrom niedrigen
Kohlenstoffgehalts im obigen Beispiel 1, wurde bei 1000°C 24 h lang nitridiert. "-0,3 mm" drückt aus, daß die Partikelgröße 0,3 oder weniger beträgt. Nachfolgend wird dieselbe Abkürzung beibehalten. Eine Zusammensetzung des hier erhaltenen Nitrids ist in Tabelle 2-(1) angegeben. Dieses Nitrid wurde in Partikel von 0,3 mm oder weniger zerkleinert. Das zerkleinerte Nitrid ließ man in HCl einer Konzentration von 3N 24 h lang reagieren. Die Zusammensetzung des nach der Säurebehandlung erhaltenen Nitrids ist in Tabelle 2-(2) angegeben. Eine Mischung aus dem Nitrid mit 0,1 Gew.% Kohlenstoffbrüss wurde durch Vakuumbehandlung bei 1250°C 24 h lang denitridiert. Die Mischungsbestandteile sind in Tabelle 2-(3) angegeben.

Wie aus dem Vergleich des Gehalts an Cr in Tabelle 1-(4) mit dem Gehalt von Cr in Tabelle 2-(3) ersichtlich, steigt der Chromgehalt an, wenn Ferrochromnitrid niedrigen Kohlenstoffgehalts zweimal nitridiert und zerkleinert wird, wie oben beschrieben.

Tabelle 2

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>(1) wiederholt</th>
<th>(2) FCr, nitridiertes</th>
<th>(3) FCr, denitridiertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>54,6</td>
<td>77,3</td>
<td>93,07</td>
</tr>
<tr>
<td>Fe</td>
<td>32,0</td>
<td>4,9</td>
<td>5,92</td>
</tr>
<tr>
<td>N</td>
<td>11,3</td>
<td>15,3</td>
<td>0,003</td>
</tr>
<tr>
<td>O</td>
<td>0,42</td>
<td>1,18</td>
<td>0,046</td>
</tr>
<tr>
<td>C</td>
<td>0,10</td>
<td>0,10</td>
<td>0,008</td>
</tr>
<tr>
<td>Si</td>
<td>0,66</td>
<td>0,09</td>
<td>0,015</td>
</tr>
<tr>
<td>P</td>
<td>0,016</td>
<td>0,016</td>
<td>0,017</td>
</tr>
<tr>
<td>S</td>
<td>0,008</td>
<td>0,008</td>
<td>0,006</td>
</tr>
</tbody>
</table>
Beispiel 3

Tabelle 3

<table>
<thead>
<tr>
<th>Waschbedingungen</th>
<th>Analysewerte (S) Gew. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N wässriges Ammoniak</td>
<td>0,008</td>
</tr>
<tr>
<td>1N wässrigen HCl</td>
<td>0,013</td>
</tr>
<tr>
<td>Wasser</td>
<td>0,032</td>
</tr>
</tbody>
</table>

Beispiel 4

Zur Entfernung von O durch die Reaktion C(s) + O (s) → CO (g) vermischt man kohlenstoffhaltiges Material mit Ferrochromnitrid in der Denitrierungsstufe des Ferrochromnitrids. Zur Herabsetzung von C, O und N bestimmt man den Partikelgrößenbereich und die Temperaturen. Beträgt die Temperatur weniger als 1100°C, wird der Gehalt an C, O und N unzureichend herabgesetzt, wie in Tabelle 4-(4) für Test Nr. 9 gezeigt. Beträgt die Temperatur mehr als 1400°C, wird ein Absinken der Chromausbeute durch Verflüchtigung von Cr erzeugt, und es tritt ein Problem der Hitzebeständigkeit in der Vakuumhitzungsvorrichtung auf.

Die Tests Nr. 1 und 2 von Tabelle 4 zeigen, daß Nitrid, das einer Säurebehandlung unterzogen und dem kohlenstoffhaltigen Material zugefügt wurde, unter Erhitzen im Vakuum denitridiert wurde. Es ist im Vergleich mit dem Fall der Zugabe von kohlenstoffhaltigem Material aus den Analysewerten in Tabelle 4-(4) für die Tests Nr. (3) bis (8) verständlich, daß, obwohl der Stickstoffgehalt absank, Sauerstoff, der während der Säurebehandlung in Ferrochromnitrid eingeschlossen worden ist, nicht entfernt werden kann.

Die Tests Nr. (3) bis (9) zeigen, daß kohlenstoffhaltiges Material Ferrochromnitrid zugefügt und Ferrochromnitrid denitridiert wurden. Die Tests Nr. 3 bis 5 zeigen, daß die Partikelgrößen von Ferrochromnitrid untersucht wurden. Waren die Partikelgrößen von Ferrochromnitrid groß, bleiben C und O zurück. Deshalb wurde für die Partikelgrößen von Ferrochromnitrid angestrebt, daß sie 0,3 mm oder weniger betrugen. In Tabelle 4-(2) stellt 1/0,3 eine Abkürzung der Partikelgrößen von Ferrochromnitrid von 0,3 bis 1 mm dar. In Tabelle 6 wird dieselbe Abkürzung ebenfalls verwendet. In Nr. 5 bis 9 von Tabelle 4 wurden Änderungen in Abhängigkeit der Denitridierungstemperaturen untersucht. Waren die Denitridierungstemperaturen niedrig, stieg die Ausbeute an Cr an, aber C, O und N, die Verunreinigungen waren, stiegen ebenfalls an. Im Hinblick auf einen Ausgleich zwischen der Ausbeute an Cr und den Verunreinigungen sollen die Denitridierungstemperaturen in einem Bereich von 1100 bis 1400°C, bevorzugt von 1150 bis 1350°C, liegen.

Tabelle 4
<table>
<thead>
<tr>
<th>Test Nr.</th>
<th>Proben</th>
<th>Partikelgröße (mm)</th>
<th>Temperatur</th>
<th>Produkt-Analysewerte (%)</th>
<th>Ausbeute Cr (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ohne Kohle</td>
<td>-1</td>
<td>1250</td>
<td>0,002 0,32 0,005</td>
<td>95,5</td>
</tr>
<tr>
<td>2</td>
<td>Ohne Kohle</td>
<td>-0,15</td>
<td>1250</td>
<td>0,003 0,72 0,003</td>
<td>99,1</td>
</tr>
<tr>
<td>3</td>
<td>Mit Kohle</td>
<td>1/0,3</td>
<td>1250</td>
<td>0,035 0,087 0,004</td>
<td>99,1</td>
</tr>
<tr>
<td>4</td>
<td>Mit Kohle</td>
<td>0,3/0,15</td>
<td>1250</td>
<td>0,024 0,051 0,003</td>
<td>98,1</td>
</tr>
<tr>
<td>5</td>
<td>Mit Kohle</td>
<td>-0,15</td>
<td>1250</td>
<td>0,012 0,026 0,003</td>
<td>98,7</td>
</tr>
<tr>
<td>6</td>
<td>Mit Kohle</td>
<td>-0,15</td>
<td>1400</td>
<td>0,004 0,023 0,003</td>
<td>95,5</td>
</tr>
<tr>
<td>7</td>
<td>Mit Kohle</td>
<td>-0,15</td>
<td>1300</td>
<td>0,007 0,026 0,003</td>
<td>97,7</td>
</tr>
<tr>
<td>8</td>
<td>Mit Kohle</td>
<td>-0,15</td>
<td>1200</td>
<td>0,021 0,048 0,004</td>
<td>98,9</td>
</tr>
<tr>
<td>9</td>
<td>Mit Kohle</td>
<td>-0,15</td>
<td>1100</td>
<td>0,19 0,37 0,52</td>
<td>99,4</td>
</tr>
</tbody>
</table>

Beispiel 5

Es werden die Ergebnisse von Untersuchungen über den Einfluß des Rührverfahrens und der Partikelgrößen von Ferrochromnitrid bei der Säurebehandlung von Ferrochromnitrid unter Rühren des Ferrochrcms in einer Säurelösung unter besonderem Bezug auf die beigefügten Zeichnungen beschrieben. Fig. 1 und 2 sind schematische Darstellungen, betreffend Rührverfahren bei der Säurebehandlung, entsprechend (1) und
(2) von Beispiel 5. Fig. 1 zeigt ein Verfahren unter kräftigem Rühren und Fig. 2 ein Zirkulationsverfahren. Fig. 3 und 4 sind schematische Darstellungen, die Vergleichen (1) bzw. (2) entsprechen. In Fig. 1 bis 4 bezeichnet Bezugszeichen 1 ein Reaktionsgefäß, das die Säurelösung 2 und zerkleinertes Ferrochrommnnitrid 3 enthält, und 4 und 5 bezeichnen rotierende Blätter zum Rühren des Inhalts des Reaktionsgefässes. Die Bezugszeichen 6 und 7 in Fig. 2 bezeichnen eine Pumpe bzw. eine Leitung zur Zirkulation der Säurelösung.

Das Beispiel 5-(1) stellt ein Beispiel dar, worin eine Aufschlämmung aus Säurelösung und Ferrochromnitrid kräftig gerührt wurde. Beispiel 5-(2) in Fig. 2 stellt ein Beispiel dar, worin die genannte Aufschlämmung gerührt und zirkuliert wurde. Vergleich (1) in Fig. 3 stellt ein Beispiel dar, worin die Aufschlämmung unter Einsatz kleiner Rührerblätter mit niedriger Rotationsgeschwindigkeit der Blätter gerührt wurde. Vergleich (2) stellt ein Beispiel dar, worin die Aufschlämmung überhaupt nicht gerührt wurde. Tabelle 5 zeigt das am meisten bevorzugte Beispiel der vorliegenden Erfindung, das im Detail später in Beispiel 6 beschrieben wird. In Tabelle 5 zeigen (1) das als Ausgangsmaterial eingesetzte Ferrochrom niedrigen Kohlenstoffgehalts, (2) Ferrochromnitrid, das beim Nitridieren und Zerkleinern des Ferrochrohs niedrigen Kohlenstoffgehalts nitridiert wurde, (3) Ferrochromnitrid nach der Säurebehandlung und (4) die Zusammensetzung der Legierung hoher Reinheit mit hohem Chromgehalt nach Denitridierung des Ferrochromnitrids.

Tabelle 5
Komponenten (1) FCr mit niedrigem C-Gehalt (Gew.%) (2) FCr-Nitrid (Gew.%) (3) FCr Nitrid nach Säurebehandlung (Gew.%) (4) FCr mit niedrigem C-Gehalt nach Denitrierung (Gew.%)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>70,5</td>
<td>64,9</td>
<td>91,1</td>
<td>93,4</td>
</tr>
<tr>
<td>Fe</td>
<td>28,1</td>
<td>25,8</td>
<td>5,7</td>
<td>6,5</td>
</tr>
<tr>
<td>N</td>
<td>0,04</td>
<td>8,0</td>
<td>11,6</td>
<td>0,004</td>
</tr>
<tr>
<td>O</td>
<td>0,15</td>
<td>0,21</td>
<td>1,0</td>
<td>0,043</td>
</tr>
<tr>
<td>C</td>
<td>0,09</td>
<td>0,09</td>
<td>0,11</td>
<td>0,006</td>
</tr>
<tr>
<td>Si</td>
<td>0,78</td>
<td>0,73</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>P</td>
<td>0,018</td>
<td>0,018</td>
<td>0,003</td>
<td>0,003</td>
</tr>
<tr>
<td>S</td>
<td>0,004</td>
<td>0,004</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>Mn</td>
<td>0,13</td>
<td>0,13</td>
<td>0,06</td>
<td>0,07</td>
</tr>
<tr>
<td>V</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
<td>0,06</td>
</tr>
<tr>
<td>Ti</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>Co</td>
<td>0,056</td>
<td>0,058</td>
<td>0,</td>
<td>0,003</td>
</tr>
</tbody>
</table>

Ferrochromnitrid der in Tabelle 5-(2) angegebenen Zusammensetzung wurde verkleinert, und es wurden Tests an drei Sorten von Verteilungen von Partikelgrößen, die in Tabelle 6 angegeben sind, durchgeführt. Die drei Sorten der Verteilungen, angegeben in Gewichtsprozent, wurden erhalten, indem man Partikel von Ferrochromnitrid mittels Sieben mit Mesh-Werten von 3 mm, 1 mm und 0,15 mm siebte.

Tabelle 6

<table>
<thead>
<tr>
<th>Verteilung</th>
<th>3/2</th>
<th>2/1</th>
<th>1/0,5</th>
<th>0,5/0,3</th>
<th>0,3/0,149</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>28</td>
<td>42</td>
<td>25</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td>1</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>-0,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 7 zeigt die erhaltenen Ergebnisse, wobei man Ferrochromnitrid mit einer Verteilung von in Tabelle 6 angegebenen Partikelgrößen einer Säurebheandlung gemäß der genannten Beispiele 5-(1) und (2) sowie gemäß Vergleichen (1) und (2) unterzog. In Tabelle 7 sind die Ausbeute an Chrom, Cr/(Cr+Fe) in den Produkten sowie die Verunreinigungen P und Si angegeben. Die Verteilung der Partikelgrößen in Tabelle 7-(1) entspricht der Verteilung der Partikelgrößen in Tabelle 6.

Wie aus den Ergebnissen von Tabelle 7 klar ersichtlich, sinkt die Ausbeute an Cr leicht ab, wenn die Partikelgrößen von Ferrochromnitrid 1 mm oder weniger betragen, der Gehalt an Cr steigt aber an, und der Gehalt an P und Si sinkt ab. Wie aus dem Vergleich von Beispiel 5-(1) und (2) mit Vergleich (1) und (2) klar ersichtlich, ist es effektiv, alle Partikel von Ferrochromnitrid zu suspendieren, wobei man kräftiges Rühren und Rühren und Zirkulation der Aufschlammung wie in den Beispielen 5-(1) und -(2) kombiniert.

Tabelle 7

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verteilung der Partikelgrößen</td>
<td>Ausbeute an Cr (%)</td>
<td>Produkteverunreinigung</td>
<td>Cr/Cr+Fe (Gew.%)</td>
</tr>
<tr>
<td>(mm)</td>
<td>(%)</td>
<td>P</td>
<td>Si</td>
</tr>
</tbody>
</table>

0,149/0,074 0,074/0,045 -0,045
26 13 16
36 31 33
Beispiel -1 93,0 91,5 0,003 0,02
5-(1) - 0,15 91,9 93,4 0,003 0,02
Beispiel -3 95,1 86,0 0,026 0,06
5-(2) -1 92,8 92,0 0,008 0,04
 -0,15 92,0 93,1 0,003 0,03
Vergleich -3 94,9 85,8 0,026 0,49
(1) -1 91,2 80,0 0,021 0,20
 -0,15 92,9 87,6 0,010 0,08

Vergleich -3 95,2 87,0 0,020 0,38
(2) -1 95,0 84,2 0,018 0,22
 -0,15 91,5 80,9 0,011 0,06

Beispiel 6

Das für die Säurebehandlung verwendete Reaktionsgefäß ist das in Beispiel 5 eingesetzte Gefäß, wie in Fig. 1 gezeigt. Es wird ein Verfahren unter kräftigem Rühren in diesem Reaktionsgefäß angewandt. 50 l Wasser wurden in das Reaktionsgefäß mit einem Volumen von 100 l gegossen. Anschließend wurden 12 kg Ferrochromnitrid mit einer Partikelgröße von 1,0 mm oder weniger in das Gefäß gegeben. Wasser und Ferrochromnitrid wurden im Reaktionsgefäß unter Verwendung eines Rührers mit Blättern von nach oben gerichtetem Fließtyp, einer Kapazität von 0,4 kW und einer Rotationsgeschwindigkeit von 250 Upm gerührt. Das Verhältnis des Rotationsdurchmessers des Blattes zum Durchmesser des Gefäßes betrug 0,85. Ferner wurde die Gesamtmenge von 81 62,5 %iger H₂SO₄ kontinuierlich der Mischung aus Wasser und Ferrochromnitrid durch Einsatz einer Mengenmeßpumpe 10 h lang zugefügt, und man ließ sie mit Ferrochromnitrid 16 h lang von Beginn der H₂SO₄-Zugabe an reagieren.

Die durch die Reaktion erhaltene Aufschlämmung wurde abfiltriert, gewaschen und als Kuchen gewonnen. Dann wurde der Kuchen mit einer Lösung vermischt, die erhalten wurde, indem man 0,5 l wässriges 25%-iges NH₃ zu 40 l Wasser gab, und abfiltriert. Danach wurde der Kuchen gewaschen und getrocknet. Eine Zusammensetzung von 7,8 kg Trockensubstanz ist in Tabelle 5-(3) angegeben.

Tabelle 8 zeigt Vergleiche von Chromausbeuten, und zwar unter sich ändernden Verfahrensweisen der Zugabe von Schwefelsäure zu Ferrochromnitrid bei der Säurebehandlung. In Tabelle 8 sind die Bedingungen der Vergleiche (3) und (4) dieselben wie in Beispiel 5-(1), ausser bezüglich der Zugabebedingungen von Schwefelsäure zu Ferrochromnitrid.

Tabelle 8

<table>
<thead>
<tr>
<th>Beispiel 5- (1)</th>
<th>Verfahren der Zugabe von Schwefelsäure</th>
<th>Ausbeute an Chrom (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 l Schwefelsäure wurden kontinuierlich</td>
<td>92,5</td>
</tr>
<tr>
<td></td>
<td>Ferrochromnitrid 10 h lang zugefügt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reaktionszeit, weitere 16 h</td>
<td></td>
</tr>
</tbody>
</table>

Vergleich 3 8 l Schwefelsäure wurden Ferrochromnitrid 10 Min. lang zugefügt. Reaktionszeit weitere 16 h

Vergleich 4 8 l Schwefelsäure wurden Ferrochromnitrid mit einer Geschwindigkeit von 1 l alle 30 Minuten zugefügt. Reaktionszeit weitere 16 h
Eine Zusammensetzung von Ferrochromnitrid, aus der Eisen durch das oben beschriebene Säurebehandlungsverfahren entfernt wurde, ist in Tabelle 5-(3) angegeben. Ferrochromnitrid wurde in der nachfolgend beschriebenen Weise denitridiert.

Beispiel 7

Beispiel 7 ist das günstigste Beispiel im Hinblick darauf, ein Ferrochrom mit hohen Prozentwerten von Cr und niedrigen Prozentwerten an Verunreinigungen zu erhalten, indem Ferrochrom niedrigen Kohlenstoffgehalts jeweils zweimal nitridiert und zerkleinert und die Säurebehandlung von Ferrochromnitrid gemäß der genannten Beispiele 5 und 6 durchgeführt wurden.
30,0 kg Ferrochrom niedrigen Kohlenstoffgehalts mit einer Partikelgröße von 3 mm oder weniger in einer in Tabelle 9-(1) angegebenen Zusammensetzung wurden in einem Vakuumerhitzungsofen bei 1150°C 24 h lang nitriert, und es wurden 32,4 kg des in Tabelle 9-(2) angegebenen Ferrochromnitrids erhalten. Dieses Ferrochromnitrid wurde in Partikel von 0,30 mm oder weniger zerkleinert. 30,0 kg Ferrochromnitrid-Partikel wurden wiederholt unter einer Stickstoffatmosphäre bei 900 Torr im Vakuumerhitzungsofen bei 900°C 24 h lang nitriert, und es wurden 32,0 kg Ferrochromnitrid mit hohem Gehalt von 13,3 Gew.% Stickstoff, wie in Tabelle 9-(3) angegeben, gewonnen.

Dieses Ferrochromnitrid mit hohem Stickstoffgehalt wurde in Partikel von 0,30 mm oder weniger zerkleinert und der folgenden Säurebehandlung unterzogen: 50 l Wasser wurden in ein Reaktionsgefäss mit einem Volumen von 100 l gegossen. Anschließend wurden 12 kg Ferrochromnitrid von 0,30 mm oder weniger Partikelgröße in das Gefäß gegeben. Wasser und Ferrochromnitrid wurden im Reaktionsgefäß durch Verwendung eines Rührers mit Blättern vom nach oben gerichteten Fließtyp, wie in Fig. 1 gezeigt, einer Kapazität von 0,4 kW und einer Rotationsgeschwindigkeit von 250 Upm gerührt. Das Verhältnis von Rotationsdurchmesser des Blattes zum Durchmesser des Gefäßes betrug 0,8. Ferner wurde die Gesamtmenge von 8 l 62,5%-iger H₂SO₄ kontinuierlich der Mischung aus Wasser und Ferrochromnitrid durch Einsatz einer Mengenmeßpumpe 10 h lang zugefügt, und man ließ sie mit Ferrochromnitrid 16 h lang von Beginn der H₂SO₄-Zugabe an reagieren. Die durch diese Reaktion erhaltene Aufschlammung wurde abfiltriert, gewaschen und als Kuchen gewonnen. Dann wurde der Kuchen mit einer Lösung, die erhalten wurde, indem man 0,5 l wässriges 25%-iges NH₃ zu 40 l Wasser gab, im Reaktionsgefäss vermischt und abfiltriert. Danach wurde der

Beispiel 7 wird weiter beschrieben. Ferrochrom niedrigen Kohlenstoffgehalts von 3 mm oder weniger Partikelgröße, enthaltend einen hohen Gehalt an Cr und einen niedrigen Gehalt an V und Mn, ist als Ausgangsmaterial bevorzugt. D.h., wenn die Partikelgrößen von Ferrochrom niedrigen Kohlenstoffgehalts größer als 3 mm sind, wird Stickstoff nur schwer dem Ferrochrom niedrigen Kohlenstoffgehalts in der Nitridierstufe einverleibt. Als Folge davon kann Ferrochromnitrid nicht in wirtschaftlicher Weise zerkleinert werden. Ist der Gehalt an Cr im Ferrochrom niedrigen Kohlenstoffgehalts niedrig, wird die Menge an in der Säurebehandlungsstufe zu entferndem Fe groß. Ferrochrom mit hohem Gehalt an Cr ist erwünscht unter Ferrochrom niedrigen Kohlenstoffgehalts, enthaltend 60 bis 72% Chrom, das gewöhnlich erhältlich ist. Da Mn und V durch die Säurebehandlung nicht vollständig entfernt werden können, ist ein Ferrochrom niedrigen Kohlenstoffgehalts erwünscht, das so wenig Mn und V wie möglich enthält. In diesem Beispiel kann allerdings Ferrochrom niedrigen Kohlenstoffgehalts, das gewöhnlich am Markt erhältlich ist, eingesetzt werden.

Die Temperatur, bei der Ferrochromnitrid niedrigen Kohlenstoffgehalts nitridiert wird, soll im Bereich von 1000 bis 1300°C in der Nitridier- und Zerkleinerungsstufe und von
800 bis 1000°C in der Säurebehandlungsstufe des Ferrochromnitrids liegen. Der Partialdruck von Stickstoff sollte erhöht sein. Auf jeden Fall können die Verfahrensbedingungen von Temperatur, Druck, Zeit und dgl. innerhalb eines Bereichs bestimmt werden, in welchem die Verfahrensstufen in wirtschaftlicher Weise ausgeführt werden können.

Ferner werden die Partikelgrößen von Ferrochromnitrid in der Säurebehandlungsstufe auf 1 mm oder weniger eingestellt, so daß alle Partikel von Ferrochromnitrid im Reaktionsbehälter suspendiert werden können. Man läßt die Ferrochromnitrid-Partikel mit der Säurelösung reagieren, wobei man das Rührverfahren mit dem Aufschlämungszirkulationsverfahren kombiniert und die Schwefelsäure den Ferrochromnitrid-Partikeln kontinuierlich zuführt. Die oben genannten Bedingungen der Säurebehandlung sind günstig, indem die Verunreinigungen herabgesetzt und die Chromausbeute gesteigert werden können.
Tabelle 9

<table>
<thead>
<tr>
<th>Komponent</th>
<th>(1) FCr mit niedrigem C-Gehalt (Gew.%)</th>
<th>(2) FCr, diert in Stufe (Gew.%)</th>
<th>(3) FCr, diert in zwei Stufen (Gew.%)</th>
<th>(4) FCR-Nitrid nach Säurebehandlung (Gew.%)</th>
<th>(5) FCr mit niedrigem C-Gehalt nach Denitrierung (Gew.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>70,5</td>
<td>65,2</td>
<td>61,2</td>
<td>78,5</td>
<td>99,0</td>
</tr>
<tr>
<td>Fe</td>
<td>28,1</td>
<td>26,0</td>
<td>24,1</td>
<td>0,56</td>
<td>0,92</td>
</tr>
<tr>
<td>N</td>
<td>0,04</td>
<td>7,5</td>
<td>13,3</td>
<td>19,8</td>
<td>0,004</td>
</tr>
<tr>
<td>O</td>
<td>0,15</td>
<td>0,21</td>
<td>0,26</td>
<td>0,85</td>
<td>0,043</td>
</tr>
<tr>
<td>C</td>
<td>0,09</td>
<td>0,09</td>
<td>0,10</td>
<td>0,11</td>
<td>0,006</td>
</tr>
<tr>
<td>Si</td>
<td>0,78</td>
<td>0,73</td>
<td>0,70</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>P</td>
<td>0,018</td>
<td>0,018</td>
<td>0,017</td>
<td>0,003</td>
<td>0,003</td>
</tr>
<tr>
<td>S</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>Mn</td>
<td>0,13</td>
<td>0,13</td>
<td>0,12</td>
<td>0,06</td>
<td>0,07</td>
</tr>
<tr>
<td>V</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
<td>0,06</td>
</tr>
<tr>
<td>Ti</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>Co</td>
<td>0,056</td>
<td>0,058</td>
<td>0,055</td>
<td>0,001</td>
<td>0,001</td>
</tr>
</tbody>
</table>
PATENTANSPRÜCHE

1. Verfahren zur Herstellung von Ferrochrom mit niedrigem Kohlenstoff- und hohem Chromgehalt von 70 bis 99%, dadurch gekennzeichnet, daß es die Stufen umfaßt, in denen man:
 Ferrochrom-Materialien mindestens einmal nitriert und zerkleinert, wobei zerkleinertes Ferrochromnitrid erhalten wird;
 das genannte Ferrochromnitrid einer Säurebehandlung unterzieht, indem man das genannte Ferrochromnitrid in einer sauren Lösung rührt, wobei Ferrochromnitrid, aus dem Eisen entfernt worden ist, erhalten wird; und
das genannte Ferrochromnitrid, aus dem Eisen entfernt worden ist, durch Erhitzen des genannten Ferrochromnitrids im Vakuum denitriert.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die genannte Nitridierung und Zerkleinerung von Ferrochrom niedrigen Kohlenstoffgehalts ein zweimaliges Nitridieren und Zerkleinern von Ferrochrom niedrigen Kohlenstoffgehalts einschließt.

4. Verfahren gemäß Anspruch 1,
dadurch gekennzeichnet, daß
die genannte Denitridierung von Ferrochromnitrid es
beinhaltet, daß man kohlenstoffhaltiges Material
Ferrochromnitrid zufügt, Ferrochromnitrid zerkleinert,
Ferrochromnitrid mit dem kohlenstoffhaltigen Material
vermischt und die Mischung aus Ferrochromnitrid und
kohlenstoffhaltigem Material unter Bedingungen von
Teilchengrößen von Ferrochrom von 0,3 mm oder weniger bei
1100 bis 1400°C denitridiert.

5. Verfahren gemäß Anspruch 1,
dadurch gekennzeichnet, daß
man
in der genannten Nitridier- und Zerkleinerungsstufe von
Ferrochrom niedrigen Kohlenstoffgehalts das Ferrochromnitrid
in Partikel von 1 mm oder weniger zerkleinert; und
in der genannten Säurebehandlungsstufe des Ferrochromnitrists
das Ferrochromnitrid mit der Säurelösung vermischt und die
Mischung aus Ferrochromnitrid und Säurelösung rührt.

6. Verfahren gemäß Anspruch 1,
dadurch gekennzeichnet, daß
man
in der genannten Nitridier- und Zerkleinerungsstufe das
Ferrochromnitrid in Partikel von 0,3 mm oder weniger
zerkleinert; und
in der genannten Säurebehandlungsstufe des Ferrochrohs das
Ferrochromnitrid mit der sauren Lösung vermischt und die
Mischung aus genannten Ferrochromnitrid und der sauren Lösung
rührt.